Open Access

Curcumin reverses doxorubicin resistance via inhibition the efflux function of ABCB4 in doxorubicin‑resistant breast cancer cells

  • Authors:
    • Chunjie Wen
    • Lijuan Fu
    • Jiafeng Huang
    • Yi Dai
    • Bin Wang
    • Ge Xu
    • Lanxiang Wu
    • Honghao Zhou
  • View Affiliations

  • Published online on: April 22, 2019     https://doi.org/10.3892/mmr.2019.10180
  • Pages: 5162-5168
  • Copyright: © Wen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Doxorubicin is one of the most widely used chemotherapy agents for the treatment of breast cancer. However, the development of doxorubicin resistance limits the long‑term treatment benefits in patients with breast cancer. Curcumin, a well‑known dietary polyphenol derived from the rhizomes of turmeric (Curcuma longa), enhances the sensitivity of breast cancer cells to chemotherapeutic agents; however, the mechanisms underlying this phenomenon remain unclear. The aim of the present study was to evaluate the effect of curcumin on chemoresistance in doxorubicin‑resistant breast cancerMCF‑7/DOX and MDA‑MB‑231/DOX cell lines. Cell Counting Kit‑8, monolayer transport, western blot and ATPase activity assays were performed during the study. The results revealed that curcumin significantly enhanced the effect of doxorubicin in doxorubicin‑resistant breast cancer cells. The intracellular accumulation of doxorubicin was substantially increased following curcumin treatment in doxorubicin‑resistant breast cancer cells, in a manner that was inversely dependent on the activity of ATP binding cassette subfamily B member 4 (ABCB4). Treatment with a combination of curcumin and doxorubicin decreases the efflux of doxorubicin in ABCB4‑overexpressing cells. Furthermore, curcumin inhibited the ATPase activity of ABCB4 without altering its protein expression. In conclusion, curcumin reversed doxorubicin resistance in human breast cancer MCF‑7/DOX and MDA‑MB‑231/DOX cells by inhibiting the ATPase activity of ABCB4. The study highlights the promising use of curcumin as a chemosensitizer in the treatment of breast cancer.

References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI

2 

O'Shaughnessy JA: Pegylated liposomal doxorubicin in the treatment of breast cancer. Clin Breast Cancer. 4:318–328. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Bonadonna G, Monfardini S, De Lena M and Fossati-Bellani F: Clinical evaluation of adriamycin, a new antitumour antibiotic. Br Med J. 3:503–506. 1969. View Article : Google Scholar : PubMed/NCBI

4 

Prados J, Melguizo C, Ortiz R, Vélez C, Alvarez PJ, Arias JL, Ruíz MA, Gallardo V and Aranega A: Doxorubicin-loaded nanoparticles: New advances in breast cancer therapy. Anticancer Agents Med Chem. 12:1058–1070. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Ween MP, Armstrong MA, Oehler MK and Ricciardelli C: The role of ABC transporters in ovarian cancer progression and chemoresistance. Crit Rev Oncol Hematol. 96:220–256. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Gottesman MM, Fojo T and Bates SE: Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat Rev Cancer. 2:48–58. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Ozben T: Mechanisms and strategies to overcome multiple drug resistance in cancer. FEBS Lett. 580:2903–2909. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Van der Bliek AM, Baas F, Ten Houte de Lange T, Kooiman PM, Van der Velde-Koerts T and Borst P: The human mdr3 gene encodes a novel P-glycoprotein homologue and gives rise to alternatively spliced mRNAs in liver. EMBO J. 6:3325–3331. 1987. View Article : Google Scholar : PubMed/NCBI

9 

Falguières T, Aït-Slimane T, Housset C and Maurice M: ABCB4: Insights from pathobiology into therapy. Clin Res Hepatol Gastroenterol. 38:557–563. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Němcová-Fürstová V, Kopperová D, Balušíková K, Ehrlichová M, Brynychová V, Václavíková R, Daniel P, Souček P and Kovář J: Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters. Toxicol Appl Pharmacol. 310:215–228. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Januchowski R, Wojtowicz K, Andrzejewska M and Zabel M: Expression of MDR1 and MDR3 gene products in paclitaxel-, doxorubicin- and vincristine-resistant cell lines. Biomed Pharmacother. 68:111–117. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Hontecillas-Prieto L, Garcia-Dominguez DJ, Vaca DP, Garcia-Mejias R, Marcilla D, Ramirez-Villar GL, Saez C and de Álava E: Multidrug resistance transporter profile reveals MDR3 as a marker for stratification of blastemal Wilms tumour patients. Oncotarget. 8:11173–11186. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Huang JF, Wen CJ, Zhao GZ, Dai Y, Li Y, Wu LX and Zhou HH: Overexpression of ABCB4 contributes to acquired doxorubicin resistance in breast cancer cells in vitro. Cancer Chemother Pharmacol. 82:199–210. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Ye MX, Zhao YL, Li Y, Miao Q, Li ZK, Ren XL, Song LQ, Yin H and Zhang J: Curcumin reverses cis-platin resistance and promotes human lung adenocarcinoma A549/DDP cell apoptosis through HIF-1α and caspase-3 mechanisms. Phytomedicine. 19:779–787. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Yoshida K, Toden S, Ravindranathan P, Han H and Goel A: Curcumin sensitizes pancreatic cancer cells to gemcitabine by attenuating PRC2 subunit EZH2, and the lncRNA PVT1 expression. Carcinogenesis. 38:1036–1046. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Gupta SC, Kismali G and Aggarwal BB: Curcumin, a component of turmeric: From farm to pharmacy. Biofactors. 39:2–13. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Banik U, Parasuraman S, Adhikary AK and Othman NH: Curcumin: The spicy modulator of breast carcinogenesis. J Exp Clin Cancer Res. 36:982017. View Article : Google Scholar : PubMed/NCBI

18 

Satoskar RR, Shah SJ and Shenoy SG: Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. Int J Clin Pharmacol Ther Toxicol. 24:651–654. 1986.PubMed/NCBI

19 

Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P and Aggarwal BB: Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene. 20:7597–7609. 2001. View Article : Google Scholar : PubMed/NCBI

20 

Shao ZM, Shen ZZ, Liu CH, Sartippour MR, Go VL, Heber D and Nguyen M: Curcumin exerts multiple suppressive effects on human breast carcinoma cells. Int J Cancer. 98:234–240. 2002. View Article : Google Scholar : PubMed/NCBI

21 

Shehzad A, Qureshi M, Anwar MN and Lee YS: Multifunctional curcumin mediate multitherapeutic effects. J Food Sci. 82:2006–2015. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Li H, Sureda A, Devkota HP, Pittalà V, Barreca D, Silva AS, Tewari D, Xu S and Nabavi SM: Curcumin, the golden spice in treating cardiovascular diseases. Biotechnol Adv. Feb 1–2019.(Epub ahead of print). View Article : Google Scholar

23 

Perkins K, Sahy W and Beckett RD: Efficacy of curcuma for treatment of osteoarthritis. J Evid Based Complementary Altern Med. 22:156–165. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Zhang DW, Fu M, Gao SH and Liu JL: Curcumin and diabetes: A systematic review. Evid Based Complement Alternat Med. 2013:6360532013. View Article : Google Scholar : PubMed/NCBI

25 

Sinha D, Biswas J, Sung B, Aggarwal BB and Bishayee A: Chemopreventive and chemotherapeutic potential of curcumin in breast cancer. Curr Drug Targets. 13:1799–1819. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Lv ZD, Liu XP, Zhao WJ, Dong Q, Li FN, Wang HB and Kong B: Curcumin induces apoptosis in breast cancer cells and inhibits tumor growth in vitro and in vivo. Int J Clin Exp Pathol. 7:2818–2824. 2014.PubMed/NCBI

27 

Lopes-Rodrigues V, Sousa E and Vasconcelos MH: Curcumin as a modulator of p-glycoprotein in cancer: Challenges and perspectives. Pharmaceuticals (Basel). 9(pii): E712016. View Article : Google Scholar : PubMed/NCBI

28 

Panda AK, Chakraborty D, Sarkar I, Khan T and Sa G: New insights into therapeutic activity and anticancer properties of curcumin. J Exp Pharmacol. 9:31–45. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Ge S, Yin T, Xu B, Gao S and Hu M: Curcumin affects phase II disposition of resveratrol through inhibiting efflux transporters MRP2 and BCRP. Pharm Res. 33:590–602. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Wortelboer HM, Usta M, van der Velde AE, Boersma MG, Spenkelink B, van Zanden JJ, Rietjens IM, van Bladeren PJ and Cnubben NH: Interplay between MRP inhibition and metabolism of MRP inhibitors: The case of curcumin. Chem Res Toxicol. 16:1642–1651. 2003. View Article : Google Scholar : PubMed/NCBI

31 

Prehm P: Curcumin analogue identified as hyaluronan export inhibitor by virtual docking to the ABC transporter MRP5. Food Chem Toxicol. 62:76–81. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Mukkavilli R, Jadhav G and Vangala S: Evaluation of drug transport in MDCKII-Wild Type, MDCKII-MDR1, MDCKII-BCRP and Caco-2 cell lines. Curr Pharm Biotechnol. 18:1151–1158. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

34 

Chen Z, Shi T, Zhang L, Zhu P, Deng M, Huang C, Hu T, Jiang L and Li J: Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 370:153–164. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Li W, Zhang H, Assaraf YG, Zhao K, Xu X, Xie J, Yang DH and Chen ZS: Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat. 27:14–29. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Kuttan R, Bhanumathy P, Nirmala K and George MC: Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett. 29:197–202. 1985. View Article : Google Scholar : PubMed/NCBI

37 

Doello K, Ortiz R, Alvarez PJ, Melguizo C, Cabeza L and Prados J: Latest in vitro and in vivo assay, clinical trials and patents in cancer treatment using curcumin: A literature review. Nutr Cancer. 70:569–578. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Lv L, Qiu K, Yu X, Chen C, Qin F, Shi Y, Ou J, Zhang T, Zhu H, Wu J, et al: Amphiphilic copolymeric micelles for doxorubicin and curcumin Co-delivery to reverse multidrug resistance in breast cancer. J Biomed Nanotechnol. 12:973–985. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Abouzeid AH, Patel NR, Rachman IM, Senn S and Torchilin VP: Anti-cancer activity of anti-GLUT1 antibody-targeted polymeric micelles co-loaded with curcumin and doxorubicin. J Drug Target. 21:994–1000. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Kim HJ, Im SA, Keam B, Ham HS, Lee KH, Kim TY, Kim YJ, Oh DY, Kim JH, Han W, et al: ABCB1 polymorphism as prognostic factor in breast cancer patients treated with docetaxel and doxorubicin neoadjuvant chemotherapy. Cancer Sci. 106:86–93. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Ma W, Guo Q, Li Y, Wang X, Wang J and Tu P: Co-assembly of doxorubicin and curcumin targeted micelles for synergistic delivery and improving anti-tumor efficacy. Eur J Pharm Biopharm. 112:209–223. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Link A, Balaguer F, Shen Y, Lozano JJ, Leung HC, Boland CR and Goel A: Curcumin modulates DNA methylation in colorectal cancer cells. PLoS One. 8:e577092013. View Article : Google Scholar : PubMed/NCBI

43 

Huminiecki L, Horbańczuk J and Atanasov AG: The functional genomic studies of curcumin. Semin Cancer Biol. 46:107–118. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Anand P, Kunnumakkara AB, Newman RA and Aggarwal BB: Bioavailability of curcumin: Problems and promises. Mol Pharm. 4:807–818. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Shome S, Talukdar AD, Choudhury MD, Bhattacharya MK and Upadhyaya H: Curcumin as potential therapeutic natural product: A nanobiotechnological perspective. J Pharm Pharmacol. 68:1481–1500. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Ghalandarlaki N, Alizadeh AM and Ashkani-Esfahani S: Nanotechnology-applied curcumin for different diseases therapy. Biomed Res Int. 2014:3942642014. View Article : Google Scholar : PubMed/NCBI

47 

Subramani PA, Panati K and Narala VR: Curcumin nanotechnologies and its anticancer activity. Nutr Cancer. 69:381–393. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Zanotto-Filho A, Coradini K, Braganhol E, Schröder R, de Oliveira CM, Simões-Pires A, Battastini AM, Pohlmann AR, Guterres SS, Forcelini CM, et al: Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment. Eur J Pharm Biopharm. 83:156–167. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wen, C., Fu, L., Huang, J., Dai, Y., Wang, B., Xu, G. ... Zhou, H. (2019). Curcumin reverses doxorubicin resistance via inhibition the efflux function of ABCB4 in doxorubicin‑resistant breast cancer cells. Molecular Medicine Reports, 19, 5162-5168. https://doi.org/10.3892/mmr.2019.10180
MLA
Wen, C., Fu, L., Huang, J., Dai, Y., Wang, B., Xu, G., Wu, L., Zhou, H."Curcumin reverses doxorubicin resistance via inhibition the efflux function of ABCB4 in doxorubicin‑resistant breast cancer cells". Molecular Medicine Reports 19.6 (2019): 5162-5168.
Chicago
Wen, C., Fu, L., Huang, J., Dai, Y., Wang, B., Xu, G., Wu, L., Zhou, H."Curcumin reverses doxorubicin resistance via inhibition the efflux function of ABCB4 in doxorubicin‑resistant breast cancer cells". Molecular Medicine Reports 19, no. 6 (2019): 5162-5168. https://doi.org/10.3892/mmr.2019.10180