Open Access

Clinical significance of miRNA‑1 and its potential target gene network in lung squamous cell carcinoma

  • Authors:
    • Xiaojiao Li
    • Meijiao Qin
    • Jiacheng Huang
    • Jie Ma
    • Xiaohua Hu
  • View Affiliations

  • Published online on: April 19, 2019     https://doi.org/10.3892/mmr.2019.10171
  • Pages: 5063-5078
  • Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Previous studies demonstrated that miRNA‑1 (miR‑1) is downregulated in certain human cancer and serves a crucial role in the progression of cancer. However, there are only a few previous studies examining the association between miR‑1 and lung squamous cell carcinoma (LUSC) and the regulatory mechanism of miR‑1 in LUSC remains unclear. Therefore, the present study investigated the clinical significance and determined the potential molecular mechanism of miR‑1 in LUSC. The expression of miR‑1 and its clinical significance in LUSC was examined by conducting a meta‑analysis of 12 studies using Stata 14, MetaDiSc1.4 and SPSS version 23. In addition, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the potential target genes of miR‑1 gathered from Gene Expression Omnibus and ArrayExpress. Meta‑analysis demonstrated that miR‑1 was significantly downregulated in LUSC [standardized mean difference: ‑1.44; 95% confidence interval (CI): ‑2.08, ‑0.81], and the area under the curve was 0.9096 (Q*=0.8416) with sensitivity of 0.71 (95% CI: 0.66, 0.76) and specificity of 0.88 (95% CI: 0.86, 0.90). The pooled positive likelihood ratio and negative likelihood ratio were 4.93 (95% CI: 2.54, 9.55) and 0.24 (95% CI: 0.10, 0.54), respectively. Bioinformatics analysis demonstrated that miR‑1 may be involved in the progression of LUSC via the ‘cell cycle’, ‘p53 signaling pathway’, ‘Fanconi anemia pathway’, ‘homologous recombination’, ‘glycine, serine and threonine metabolism’ and ‘oocyte meiosis’. In summary, miR‑1 was significantly downregulated in LUSC, suggesting a novel and promising non‑invasive biomarker for diagnosing LUSC, and miR‑1 was involved in LUSC progression via a number of significant pathways.

References

1 

Chen M, Liu X, Du J, Wang XJ and Xia L: Differentiated regulation of immune-response related genes between LUAD and LUSC subtypes of lung cancers. Oncotarget. 8:133–144. 2017.PubMed/NCBI

2 

Freeman JR, Chu S, Hsu T and Huang YT: Epigenome-wide association study of smoking and DNA methylation in non-small cell lung neoplasms. Oncotarget. 7:69579–69591. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Peng L, Bian XW, Li DK, Xu C, Wang GM, Xia QY and Xiong Q: Large-scale RNA-Seq transcriptome analysis of 4043 cancers and 548 normal tissue controls across 12 TCGA cancer types. Sci Rep. 5:134132015. View Article : Google Scholar : PubMed/NCBI

4 

Czarnecka KH, Migdalska-Sęk M, Domańska D, Pastusza-Lewandoska D, Dutkowska A, Kordiak J, Nawrot E, Kiszałkiewicz J, Antczak A and Brzeziańska-Lasota E: FHIT promoter methylation status, low protein and high mRNA levels in patients with non-small cell lung cancer. Int J Oncol. 49:1175–1184. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Chang JT, Lee YM and Huang RS: The impact of the cancer genome atlas on lung cancer. Transl Res. 166:568–585. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Wang L, Chen Z, An L, Wang Y, Zhang Z, Guo Y and Liu C: Analysis of long non-coding RNA expression profiles in non-small cell lung cancer. Cell Physiol Biochem. 38:2389–2400. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Bittoni MA, Focht BC, Clinton SK, Buckworth J and Harris RE: Prospective evaluation of C-reactive protein, smoking and lung cancer death in the Third National Health and Nutrition Examination Survey. Int J Oncol. 47:1537–1544. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Eldem V, Çelikkol Akçay U, Ozhuner E, Bakır Y, Uranbey S and Unver T: Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS One. 7:e502982012. View Article : Google Scholar : PubMed/NCBI

9 

Ma N, Zhang W, Qiao C, Luo H, Zhang X, Liu D, Zang S, Zhang L and Bai J: The tumor suppressive role of MiRNA-509-5p by targeting FOXM1 in non-small cell lung cancer. Cell Physiol Biochem. 38:1435–1446. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Li P, Liu H, Wang Z, He F, Wang H, Shi Z, Yang A and Ye J: MicroRNAs in laryngeal cancer: Implications for diagnosis, prognosis and therapy. Am J Transl Res. 8:1935–1944. 2016.PubMed/NCBI

11 

Wang J, Li Y, Ding M, Zhang H, Xu X and Tang J: Molecular mechanisms and clinical applications of miR-22 in regulating malignant progression in human cancer (Review). Int J Oncol. 50:345–355. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Gambari R, Brognara E, Spandidos DA and Fabbri E: Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Νew trends in the development of miRNA therapeutic strategies in oncology (Review). Int J Oncol. 49:5–32. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Subramani R, Gangwani L, Nandy SB, Arumugam A, Chattopadhyay M and Lakshmanaswamy R: Emerging roles of microRNAs in pancreatic cancer diagnosis, therapy and prognosis (Review). Int J Oncol. 47:1203–1210. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Wang P, Yang D, Zhang H, Wei X, Ma T, Cheng Z, Hong Q, Hu J, Zhuo H, Song Y, et al: Early detection of lung cancer in serum by a panel of MicroRNA biomarkers. Clin Lung Cancer. 16:313–319.e1. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Ma T, Zhao Y, Wei K, Yao G, Pan C, Liu B, Xia Y, He Z, Qi X, Li Z, et al: MicroRNA-124 functions as a tumor suppressor by regulating CDH2 and epithelial-mesenchymal transition in non-small cell lung cancer. Cell Physiol Biochem. 38:1563–1574. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Feng X, Jiang J, Shi S, Xie H, Zhou L and Zheng S: Knockdown of miR-25 increases the sensitivity of liver cancer stem cells to TRAIL-induced apoptosis via PTEN/PI3K/Akt/Bad signaling pathway. Int J Oncol. 49:2600–2610. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Meerson A and Yehuda H: Leptin and insulin up-regulate miR-4443 to suppress NCOA1 and TRAF4, and decrease the invasiveness of human colon cancer cells. BMC Cancer. 16:8822016. View Article : Google Scholar : PubMed/NCBI

18 

Kumamoto T, Seki N, Mataki H, Mizuno K, Kamikawaji K, Samukawa T, Koshizuka K, Goto Y and Inoue H: Regulation of TPD52 by antitumor microRNA-218 suppresses cancer cell migration and invasion in lung squamous cell carcinoma. Int J Oncol. 49:1870–1880. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Wang Y, Chen L, Wu Z, Wang M, Jin F, Wang N, Hu X, Liu Z, Zhang CY, Zen K, et al: miR-124-3p functions as a tumor suppressor in breast cancer by targeting CBL. BMC Cancer. 16:8262016. View Article : Google Scholar : PubMed/NCBI

20 

Yu X and Li Z: New insights into MicroRNAs involves in drug resistance in diffuse large B cell lymphoma. Am J Transl Res. 7:2536–2542. 2015.PubMed/NCBI

21 

Li Z, Yu X, Shen J, Law PT, Chan MT and Wu WK: MicroRNA expression and its implications for diagnosis and therapy of gallbladder cancer. Oncotarget. 6:13914–13921. 2015.PubMed/NCBI

22 

Cui L, Li Y, Lv X, Li J, Wang X, Lei Z and Li X: Expression of MicroRNA-301a and its functional roles in malignant melanoma. Cell Physiol Biochem. 40:230–244. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Zhang X, Zhang Y, Liu X, Fang A, Wang J, Yang Y, Wang L, Du L and Wang C: Direct quantitative detection for cell-free miR-155 in urine: A potential role in diagnosis and prognosis for non-muscle invasive bladder cancer. Oncotarget. 7:3255–3266. 2016.PubMed/NCBI

24 

Gao Y, Feng B, Han S, Lu L, Chen Y, Chu X, Wang R and Chen L: MicroRNA-129 in human cancers: From tumorigenesis to clinical treatment. Cell Physiol Biochem. 39:2186–2202. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Deng T, Yuan Y, Zhang C, Zhang C, Yao W, Wang C, Liu R and Ba Y: Identification of circulating MiR-25 as a potential biomarker for pancreatic cancer diagnosis. Cell Physiol Biochem. 39:1716–1722. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Lu L, Zhou L, Chen EZ, Sun K, Jiang P, Wang L, Su X, Sun H and Wang H: A Novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network. PLoS One. 7:e275962012. View Article : Google Scholar : PubMed/NCBI

27 

Han C, Shen JK, Hornicek FJ, Kan Q and Duan Z: Regulation of microRNA-1 (miR-1) expression in human cancer. Biochim Biophys Acta. 1860:227–232. 2017. View Article : Google Scholar

28 

Han C, Zhou Y, An Q, Li F, Li D, Zhang X, Yu Z, Zheng L, Duan Z and Kan Q: MicroRNA-1 (miR-1) inhibits gastric cancer cell proliferation and migration by targeting MET. Tumour Biol. 36:6715–6723. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Wang W, Shen F and Wang C, Lu W, Wei J, Shang A and Wang C: MiR-1-3p inhibits the proliferation and invasion of bladder cancer cells by suppressing CCL2 expression. Tumour Biol. 39:10104283176983832017.PubMed/NCBI

30 

Wang Z, Wang J, Chen Z, Wang K and Shi L: MicroRNA-1-3p inhibits proliferation and migration of oral squamous cell carcinoma cells by targeting DKK1. Biochem Cell Biol. 96:355–364. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Cui R, Meng W, Sun HL, Kim T, Ye Z, Fassan M, Jeon YJ, Li B, Vicentini C, Peng Y, et al: MicroRNA-224 promotes tumor progression in nonsmall cell lung cancer. Proc Natl Acad Sci USA. 112:E4288–E4297. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Zhang WC, Chin TM, Yang H, Nga ME, Lunny DP, Lim EK, Sun LL, Pang YH, Leow YN, Malusay SR, et al: Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression. Nat Commun. 7:117022016. View Article : Google Scholar : PubMed/NCBI

33 

Zhang X, Wang C, Shan S, Liu X, Jiang Z and Ren T: TLR4/ROS/miRNA-21 pathway underlies lipopolysaccharide instructed primary tumor outgrowth in lung cancer patients. Oncotarget. 7:42172–42182. 2016.PubMed/NCBI

34 

Yu N, Zhang Q, Liu Q, Yang J and Zhang S: A meta-analysis: microRNAs' prognostic function in patients with nonsmall cell lung cancer. Cancer Med. 6:2098–2105. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Gao L, Li SH, Tian YX, Zhu QQ, Chen G, Pang YY and Hu XH: Role of downregulated miR-133a-3p expression in bladder cancer: A bioinformatics study. Onco Targets Ther. 10:3667–3683. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Liu Y, Xing Z, Zhan P, Liu H, Ye W, Lv T and Song Y: Is it feasible to detect epidermal growth factor receptor mutations in circulating tumor cells in nonsmall cell lung cancer?: A meta-analysis. Medicine (Baltimore). 95:e51152016. View Article : Google Scholar : PubMed/NCBI

37 

Zhang J, Yu Y, Li Y and Wei L: Diagnostic value of contrast-enhanced ultrasound in hepatocellular carcinoma: A meta-analysis with evidence from 1998 to 2016. Oncotarget. 8:75418–75426. 2017.PubMed/NCBI

38 

Chen WS, Li JJ, Hong L, Xing ZB, Wang F and Li CQ: Comparison of MRI, CT and 18F-FDG PET/CT in the diagnosis of local and metastatic of nasopharyngeal carcinomas: An updated meta analysis of clinical studies. Am J Transl Res. 8:4532–4547. 2016.PubMed/NCBI

39 

Ma X, Wang L, Wu H, Feng Y, Han X, Bu H and Zhu Q: Spleen stiffness is superior to liver stiffness for predicting esophageal varices in chronic liver disease: A meta-analysis. PLoS One. 11:e01657862016. View Article : Google Scholar : PubMed/NCBI

40 

Love MI, Huber W and Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI

41 

Zhang Y, Dang YW, Wang X, Yang X, Zhang R, Lv ZL and Chen G: Comprehensive analysis of long non-coding RNA PVT1 gene interaction regulatory network in hepatocellular carcinoma using gene microarray and bioinformatics. Am J Transl Res. 9:3904–3917. 2017.PubMed/NCBI

42 

Zeng JH, Xiong DD, Pang YY, Zhang Y, Tang RX, Luo DZ and Chen G: Identification of molecular targets for esophageal carcinoma diagnosis using miRNA-seq and RNA-seq data from The Cancer Genome Atlas: A study of 187 cases. Oncotarget. 8:35681–35699. 2017.PubMed/NCBI

43 

Zhang Y, He RQ, Dang YW, Zhang XL, Wang X, Huang SN, Huang WT, Jiang MT, Gan XN, Xie Y, et al: Comprehensive analysis of the long noncoding RNA HOXA11-AS gene interaction regulatory network in NSCLC cells. Cancer Cell Int. 16:892016. View Article : Google Scholar : PubMed/NCBI

44 

Zhang Y, Huang JC, Cai KT, Yu XB, Chen YR, Pan WY, He ZL, Lv J, Feng ZB and Chen G: Long non-coding RNA HOTTIP promotes hepatocellular carcinoma tumorigenesis and development: A comprehensive investigation based on bioinformatics, qRT-PCR and meta-analysis of 393 cases. Int J Oncol. 51:1705–1721. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Maere S, Heymans K and Kuiper M: BiNGO: A Cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks. Bioinformatics. 21:3448–3449. 2005. View Article : Google Scholar : PubMed/NCBI

46 

Merico D, Isserlin R, Stueker O, Emili A and Bader GD: Enrichment map: A network-based method for gene-set enrichment visualization and interpretation. PLoS One. 5:e139842010. View Article : Google Scholar : PubMed/NCBI

47 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

48 

Seike M, Goto A, Okano T, Bowman ED, Schetter AJ, Horikawa I, Mathe EA, Jen J, Yang P, Sugimura H, et al: MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci USA. 106:12085–12090. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Raponi M, Dossey L, Jatkoe T, Wu X, Chen G, Fan H and Beer DG: MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res. 69:5776–5783. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Ohba T and Nagano H: A small-cell lung cancer subtype with good prognosis found by a three miRNA signature. simplehttps://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19945Oct 1st–2017

51 

Nymark P, Guled M, Borze I, Faisal A, Lahti L, Salmenkivi K, Kettunen E, Anttila S and Knuutila S: Integrative analysis of microRNA, mRNA and aCGH data reveals asbestos- and histology-related changes in lung cancer. Genes Chromosomes Cancer. 50:585–597. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Patnaik SK, Kannisto ED, Mallick R, Vachani A and Yendamuri S: Whole blood microRNA expression may not be useful for screening non-small cell lung cancer. PLoS One. 12:e01819262017. View Article : Google Scholar : PubMed/NCBI

53 

van Jaarsveld MT, Wouters MD, Boersma AW, Smid M, van Ijcken WF, Mathijssen RH, Hoeijmakers JH, Martens JW, van Laere S, Wiemer EA and Pothof J: DNA damage responsive microRNAs misexpressed in human cancer modulate therapy sensitivity. Mol Oncol. 8:458–468. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Arima C, Kajino T, Tamada Y, Imoto S, Shimada Y, Nakatochi M, Suzuki M, Isomura H, Yatabe Y, Yamaguchi T, et al: Lung adenocarcinoma subtypes definable by lung development-related miRNA expression profiles in association with clinicopathologic features. Carcinogenesis. 35:2224–2231. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Jin Y, Liu YL and Lu SH: The miRNA expression profiles in three subtypes of lung carcinomas. simplehttps://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74190Oct 12th–2017

56 

Liu T, Hu K, Zhao Z, Chen G, Ou X, Zhang H, Zhang X, Wei X, Wang D, Cui M and Liu C: MicroRNA-1 down-regulates proliferation and migration of breast cancer stem cells by inhibiting the Wnt/β-catenin pathway. Oncotarget. 6:41638–41649. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Xie M, Dart DA, Guo T, Xing XF, Cheng XJ, Du H, Jiang WG, Wen XZ and Ji JF: MicroRNA-1 acts as a tumor suppressor microRNA by inhibiting angiogenesis-related growth factors in human gastric cancer. Gastric Cancer. 21:41–54. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Xu X, Wu X, Jiang Q, Sun Y, Liu H, Chen R and Wu S: Downregulation of microRNA-1 and microRNA-145 contributes synergistically to the development of colon cancer. Int J Mol Med. 36:1630–1638. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Mataki H, Enokida H, Chiyomaru T, Mizuno K, Matsushita R, Goto Y, Nishikawa R, Higashimoto I, Samukawa T, Nakagawa M, et al: Downregulation of the microRNA-1/133a cluster enhances cancer cell migration and invasion in lung-squamous cell carcinoma via regulation of Coronin1C. J Hum Genet. 60:53–61. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Liu J, Zhang C and Feng Z: Tumor suppressor p53 and its gain-of-function mutants in cancer. Acta Biochim Biophys Sin (Shanghai). 46:170–179. 2014. View Article : Google Scholar : PubMed/NCBI

61 

Zhong G, Chen X, Fang X, Wang D, Xie M and Chen Q: Fra-1 is upregulated in lung cancer tissues and inhibits the apoptosis of lung cancer cells by the P53 signaling pathway. Oncol Rep. 35:447–453. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Zhang HY, Yang W and Lu JB: Knockdown of GluA2 induces apoptosis in non-small-cell lung cancer A549 cells through the p53 signaling pathway. Oncol Lett. 14:1005–1010. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Jung IL, Kang HJ, Kim KC and Kim IG: PTEN/pAkt/p53 signaling pathway correlates with the radioresponse of non-small cell lung cancer. Int J Mol Med. 25:517–523. 2010.PubMed/NCBI

64 

Zhang C, Liu J, Tan C, Yue X, Zhao Y, Peng J, Wang X, Laddha SV, Chan CS, Zheng S, et al: microRNA-1827 represses MDM2 to positively regulate tumor suppressor p53 and suppress tumorigenesis. Oncotarget. 7:8783–8796. 2016.PubMed/NCBI

65 

Perdas E, Stawski R, Nowak D and Zubrzycka M: Potential of liquid biopsy in papillary thyroid carcinoma in context of miRNA, BRAF and p53 mutation. Curr Drug Targets. 19:1721–1729. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Xiao S, Wang R, Wu X, Liu W and Ma S: The long noncoding RNA TP73-AS1 interacted with miR-124 to modulate glioma growth by targeting inhibitor of apoptosis-stimulating protein of p53. DNA Cell Biol. 37:117–125. 2018. View Article : Google Scholar : PubMed/NCBI

67 

He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, et al: A microRNA component of the p53 tumour suppressor network. Nature. 447:1130–1134. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Li, X., Qin, M., Huang, J., Ma, J., & Hu, X. (2019). Clinical significance of miRNA‑1 and its potential target gene network in lung squamous cell carcinoma. Molecular Medicine Reports, 19, 5063-5078. https://doi.org/10.3892/mmr.2019.10171
MLA
Li, X., Qin, M., Huang, J., Ma, J., Hu, X."Clinical significance of miRNA‑1 and its potential target gene network in lung squamous cell carcinoma". Molecular Medicine Reports 19.6 (2019): 5063-5078.
Chicago
Li, X., Qin, M., Huang, J., Ma, J., Hu, X."Clinical significance of miRNA‑1 and its potential target gene network in lung squamous cell carcinoma". Molecular Medicine Reports 19, no. 6 (2019): 5063-5078. https://doi.org/10.3892/mmr.2019.10171