Downregulation of DCC sensitizes multiple myeloma cells to bortezomib treatment

  • Authors:
    • Dorival Mendes Rodrigues‑Junior
    • Thaís Priscila Biassi
    • Gabriela Estrela de Albuquerque
    • Viviane Carlin
    • Marcus Vinicius Buri
    • Joel Machado‑Junior
    • Andre Luiz Vettore
  • View Affiliations

  • Published online on: April 9, 2019     https://doi.org/10.3892/mmr.2019.10142
  • Pages: 5023-5029
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Multiple myeloma (MM) is an incurable disease; a better understanding of the molecular aspects of this hematological malignancy could contribute to the development of new treatment strategies and help to improve the survival rates of patients with MM. Previously, the methylation status of the deleted in colorectal cancer (DCC) gene was correlated with the survival rate of patients with MM, thus the main goal of this study was to understand DCC contribution to MM tumorigenesis, and to assess the impact of DCC inhibition in the MM response to treatment with bortezomib. Our results demonstrated that hypermethylation of the DCC promoter inhibits gene expression, and DCC silencing is significantly correlated with a reduction in cell viability and an increase in cell death induced by bortezomib. In conclusion, our results suggested that hypermethylation is an important mechanism of DCC expression regulation in MM and that the absence of DCC contributes to the enhanced sensitivity to treatment with bortezomib.

References

1 

Morgan GJ: Advances in the biology and treatment of myeloma. Br J Haematol. 105 (Suppl 1):S4–S6. 1999.

2 

Smith ML and Newland AC: Treatment of myeloma. QJM. 92:11–14. 1999. View Article : Google Scholar : PubMed/NCBI

3 

Röllig C, Knop S and Bornhäuser M: Multiple myeloma. Lancet. 385:2197–2208. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Mateos MV, Ocio EM and San Miguel JF: Novel generation of agents with proven clinical activity in multiple myeloma. Semin Oncol. 40:618–633. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Cvek B: Proteasome inhibitors. Prog Mol Biol Transl Sci. 109:161–226. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Moreau P, Richardson PG, Cavo M, Orlowski RZ, San Miguel JF, Palumbo A and Harousseau JL: Proteasome inhibitors in multiple myeloma: 10 years later. Blood. 120:947–959. 2012. View Article : Google Scholar : PubMed/NCBI

7 

McBride A and Ryan PY: Proteasome inhibitors in the treatment of multiple myeloma. Expert Rev Anticancer Ther. 13:339–358. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Grosicki S, Barchnicka A, Jurczyszyn A and Grosicka A: Bortezomib for the treatment of multiple myeloma. Expert Rev Hematol. 7:173–185. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Brenner H, Gondos A and Pulte D: Recent major improvement in long-term survival of younger patients with multiple myeloma. Blood. 111:2521–2526. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Zeldenrust SR, Dingli D, Russell SJ, Lust JA, et al: Improved survival in multiple myeloma and the impact of novel therapies. Blood. 111:2516–2520. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Pulte D, Redaniel M, Brenner H, Jansen L and Jeffreys M: Recent improvement in survival of patients with multiple myeloma: Variation by ethnicity. Leuk Lymphoma. 55:1083–1089. 2014. View Article : Google Scholar : PubMed/NCBI

12 

de Carvalho F, Colleoni GW, Almeida MS, Carvalho AL and Vettore AL: TGFbetaR2 aberrant methylation is a potential prognostic marker and therapeutic target in multiple myeloma. Int J Cancer. 125:1985–1991. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Hedrick L, Cho KR, Fearon ER, Wu TC, Kinzler KW and Vogelstein B: The DCC gene product in cellular differentiation and colorectal tumorigenesis. Genes Dev. 8:1174–1183. 1994. View Article : Google Scholar : PubMed/NCBI

14 

Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS, Culotti JG and Tessier-Lavigne M: Deleted in colorectal cancer (DCC) encodes a netrin receptor. Cell. 87:175–185. 1996. View Article : Google Scholar : PubMed/NCBI

15 

Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM and Bos JL: Genetic alterations during colorectal-tumor development. N Engl J Med. 319:525–532. 1998. View Article : Google Scholar

16 

Fearon ER, Cho KR, Nigro JM, Kern SE, Simons JW, Ruppert JM, Hamilton SR, Preisinger AC, Thomas G, Kinzler KW, et al: Identification of a chromosome 18q gene that is altered in colorectal cancers. Science. 247:49–56. 1990. View Article : Google Scholar : PubMed/NCBI

17 

Cho KR and Fearon ER: DCC: Linking tumour suppressor genes and altered cell surface interactions in cancer? Eur J Cancer 31A. 1055–1060. 1995. View Article : Google Scholar

18 

Fearon ER: DCC: Is there a connection between tumorigenesis and cell guidance molecules? Biochim Biophys Acta. 1288:M17–M23. 1996.PubMed/NCBI

19 

Fazeli A, Dickinson SL, Hermiston ML, Tighe RV, Steen RG, Small CG, Stoeckli ET, Keino-Masu K, Masu M, Rayburn H, et al: Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature. 386:796–804. 1997. View Article : Google Scholar : PubMed/NCBI

20 

Forcet C, Ye X, Granger L, Corset V, Shin H, Bredesen DE and Mehlen P: The dependence receptor DCC (deleted in colorectal cancer) defines an alternative mechanism for caspase activation. Proc Natl Acad Sci USA. 98:3416–3421. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Bamias AT, Bai MC, Agnantis NJ, Michael MC, Alamanos YP, Stefanaki SV, Razi ED, Skarlos DV, Kappas AM and Pavlidis NA: Prognostic significance of the deleted in colorectal cancer gene protein expression in high-risk resected gastric carcinoma. Cancer Invest. 21:333–340. 2003. View Article : Google Scholar : PubMed/NCBI

22 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Andrade VC, Vettore AL, Panepucci RA, Almeida MS, Yamamoto M, De Carvalho F, Caballero OL, Zago MA and Colleoni GW: Number of expressed cancer/testis antigens identifies focal adhesion pathway genes as possible targets for multiple myeloma therapy. Leuk Lymphoma. 51:1543–1549. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Vidal DO, Paixão VA, Brait M, Souto EX, Caballero OL, Lopes LF and Vettore AL: Aberrant methylation in pediatric myelodysplastic syndrome. Leuk Res. 31:175–181. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Rettori MM, de Carvalho AC, Bomfim Longo AL, de Oliveira CZ, Kowalski LP, Carvalho AL and Vettore AL: Prognostic significance of TIMP3 hypermethylation in post-treatment salivary rinse from head and neck squamous cell carcinoma patients. Carcinogenesis. 34:20–27. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Palumbo A and Anderson K: Multiple myeloma. N Engl J Med. 364:1046–1060. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Garinis GA, Patrinos GP, Spanakis NE and Menounos PG: DNA hypermethylation: When tumour suppressor genes go silent. Hum Genet. 111:115–127. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Mehlen P and Fearon ER: Role of the dependence receptor DCC in colorectal cancer pathogenesis. J Clin Oncol. 22:3420–3428. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Meimei L, Peiling L, Baoxin L, Changmin L, Rujin Z and Chunjie H: Lost expression of DCC gene in ovarian cancer and its inhibition in ovarian cancer cells. Med Oncol. 28:282–289. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Cai Y, Hu CJ, Wang J and Wang ZH: Influence of deleted in colorectal carcinoma gene on proliferation of ovarian cancer cell line SKOV-3 in vivo and in vitro. Chin Med Sci J. 26:175–181. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Roush W: Putative cancer gene shows up in development instead. Science. 276:534–535. 1997. View Article : Google Scholar : PubMed/NCBI

32 

Crawford LJ, Walker B, Ovaa H, Chauhan D, Anderson KC, Morris TC and Irvine AE: Comparative selectivity and specificity of the proteasome inhibitors BzLLLCOCHO, PS-341, and MG-132. Cancer Res. 66:6379–6386. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Kisselev AF, van der Linden WA and Overkleeft HS: Proteasome inhibitors: An expanding army attacking a unique target. Chem Biol. 19:99–115. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Nawrocki ST, Carew JS, Dunner K Jr, Boise LH, Chiao PJ, Huang P, Abbruzzese JL and McConkey DJ: Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res. 65:11510–11519. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Rajkumar SV and Kyle RA: Multiple myeloma: Diagnosis and treatment. Mayo Clin Proc. 80:1371–1382. 2005. View Article : Google Scholar : PubMed/NCBI

36 

San Miguel J, Bladé J, Boccadoro M, Cavenagh J, Glasmacher A, Jagannath S, Lonial S, Orlowski RZ, Sonneveld P and Ludwig H: A practical update on the use of bortezomib in the management of multiple myeloma. Oncologist. 11:51–61. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Chauhan D, Li G, Podar K, Hideshima T, Shringarpure R, Catley L, Mitsiades C, Munshi N, Tai YT, Suh N, et al: The bortezomib/proteasome inhibitor PS-341 and triterpenoid CDDO-Im induce synergistic anti-multiple myeloma (MM) activity and overcome bortezomib resistance. Blood. 103:3158–3166. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Yang B, OHerrin SM, Wu J, Reagan-Shaw S, Ma Y, Bhat KM, Gravekamp C, Setaluri V, Peters N, Hoffmann FM, et al: MAGE-A, mMage-b, and MAGE-C proteins form complexes with KAP1 and suppress p53-dependent apoptosis in MAGE-positive cell lines. Cancer Res. 67:9954–9962. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Atanackovic D, Hildebrandt Y, Jadczak A, Cao Y, Luetkens T, Meyer S, Kobold S, Bartels K, Pabst C, Lajmi N, et al: Cancer-testis antigens MAGE-C1/CT7 and MAGE-A3 promote the survival of multiple myeloma cells. Haematologica. 95:785–793. 2010. View Article : Google Scholar : PubMed/NCBI

40 

de Carvalho F, Costa ET, Camargo AA, Gregorio JC, Masotti C, Andrade VC, Strauss BE, Caballero OL, Atanackovic D and Colleoni GW: Targeting MAGE-C1/CT7 expression increases cell sensitivity to the proteasome inhibitor bortezomib in multiple myeloma cell lines. PLoS One. 6:e277072011. View Article : Google Scholar : PubMed/NCBI

41 

Hu X, Xuan H, Du H, Jiang H and Huang J: Down-regulation of CD9 by methylation decreased bortezomib sensitivity in multiple myeloma. PLoS One. 9:e957652014. View Article : Google Scholar : PubMed/NCBI

42 

Moschetta M, Basile A, Ferrucci A, Frassanito MA, Rao L, Ria R, Solimando AG, Giuliani N, Boccarelli A, Fumarola F, et al: Novel targeting of phospho-cMET overcomes drug resistance and induces antitumor activity in multiple myeloma. Clin Cancer Res. 19:4371–4382. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Xi H, Li L, Du J, An R, Fan R, Lu J, Wu YX, Wu SX, Hou J and Zhao LM: hsa-miR-631 resensitizes bortezomib-resistant multiple myeloma cell lines by inhibiting UbcH10. Oncol Rep. 37:961–968. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Agarwal V, Bell GW, Nam JW and Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. Elife. 4:12–Aug;2015.doi: 10.7554/eLife.05005. View Article : Google Scholar

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Rodrigues‑Junior, D.M., Biassi, T.P., de Albuquerque, G.E., Carlin, V., Buri, M.V., Machado‑Junior, J., & Vettore, A.L. (2019). Downregulation of DCC sensitizes multiple myeloma cells to bortezomib treatment. Molecular Medicine Reports, 19, 5023-5029. https://doi.org/10.3892/mmr.2019.10142
MLA
Rodrigues‑Junior, D. M., Biassi, T. P., de Albuquerque, G. E., Carlin, V., Buri, M. V., Machado‑Junior, J., Vettore, A. L."Downregulation of DCC sensitizes multiple myeloma cells to bortezomib treatment". Molecular Medicine Reports 19.6 (2019): 5023-5029.
Chicago
Rodrigues‑Junior, D. M., Biassi, T. P., de Albuquerque, G. E., Carlin, V., Buri, M. V., Machado‑Junior, J., Vettore, A. L."Downregulation of DCC sensitizes multiple myeloma cells to bortezomib treatment". Molecular Medicine Reports 19, no. 6 (2019): 5023-5029. https://doi.org/10.3892/mmr.2019.10142