Role of lncRNA uc.457 in the differentiation and maturation of cardiomyocytes

  • Authors:
    • Qijun Zhang
    • Zijie Cheng
    • Zhangbin Yu
    • Chun Zhu
    • Lingmei Qian
  • View Affiliations

  • Published online on: April 4, 2019     https://doi.org/10.3892/mmr.2019.10132
  • Pages: 4927-4934
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Congenital heart disease (CHD) is the most common type of birth defect, and the leading cause of fetal mortality. The long noncoding RNA (lncRNA) uc.457 is differentially expressed in cardiac tissue from patients with a ventricular septal defect; however, its role in cardiac development and CHD remains unknown. In the present study, the role of uc.457 in the differentiation and maturation of cardiomyocytes was investigated. Bioinformatics approaches were employed to analyze putative transcription factor (TF) regulation, histone modifications and the biological functions of uc.457. Subsequently, uc.457 overexpression and small interfering RNA‑mediated knockdown were performed to evaluate the functional role of the lncRNA in the dimethyl sulfoxide‑induced differentiation of P19 cells into cardiomyocytes. Bioinformatics analyses predicted that uc.457 binds to TFs associated with cardiomyocyte growth and cardiac development. Cell Counting Kit‑8 assays demonstrated that uc.457 overexpression inhibited cell proliferation, whereas knockdown of uc.457 enhanced the proliferation of differentiating cardiomyocytes. Additionally, reverse transcription‑quantitative polymerase chain reaction and western blot analyses revealed that overexpression of uc.457 suppressed the mRNA and protein expression of histone cell cycle regulation defective homolog A, natriuretic peptide A, cardiac muscle troponin T and myocyte‑specific enhancer factor 2C. Collectively, the results indicated that overexpression of uc.457 inhibited the differentiation and proliferation of cardiomyocytes, suggesting that dysregulated uc.457 expression may be associated with CHD.

References

1 

Sadowski SL: Congenital cardiac disease in the newborn infant: Past, present, and future. Crit Care Nurs Clin North Am. 2137–48. (vi)2009. View Article : Google Scholar : PubMed/NCBI

2 

Srivastava D: Making or breaking the heart: From lineage determination to morphogenesis. Cell. 126:1037–1048. 2006. View Article : Google Scholar : PubMed/NCBI

3 

van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ and Roos-Hesselink JW: Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. J Am Coll Cardiol. 58:2241–2247. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Trojnarska O, Grajek S, Katarzyński S and Kramer L: Predictors of mortality in adult patients with congenital heart disease. Cardiol J. 16:341–347. 2009.PubMed/NCBI

5 

Blue GM, Kirk EP, Sholler GF, Harvey RP and Winlaw DS: Congenital heart disease: Current knowledge about causes and inheritance. Med J Aust. 197:155–159. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Bruneau BG: The developmental genetics of congenital heart disease. Nature. 451:943–948. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Olson EN: Gene regulatory networks in the evolution and development of the heart. Science. 313:1922–1927. 2006. View Article : Google Scholar : PubMed/NCBI

8 

de la Pompa JL and Epstein JA: Coordinating tissue interactions: Notch signaling in cardiac development and disease. Dev Cell. 22:244–254. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Batista PJ and Chang HY: Long noncoding RNAs: Cellular address codes in development and disease. Cell. 152:1298–1307. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Frank S, Aguirre A, Hescheler J and Kurian L: A lncRNA perspective into (Re)Building the heart. Front Cell Dev Biol. 4–128. 2016.PubMed/NCBI

11 

Shen S, Jiang H, Bei Y, Xiao J and Li X: Long non-coding RNAs in cardiac remodeling. Cell Physiol Biochem. 41:1830–1837. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Ounzain S, Crippa S and Pedrazzini T: Small and long non-coding RNAs in cardiac homeostasis and regeneration. Biochim Biophys Acta. 1833:923–933. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Di Mauro V, Barandalla-Sobrados M and Catalucci D: The noncoding-RNA landscape in cardiovascular health and disease. Noncoding RNA Res. 3:12–19. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ and Li PF: The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res. 114:1377–1388. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, et al: Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell. 152:570–583. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Song G, Shen Y, Zhu J, Liu H, Liu M, Shen YQ, Zhu S, Kong X, Yu Z and Qian L: Integrated analysis of dysregulated lncRNA expression in fetal cardiac tissues with ventricular septal defect. PLoS One. 8:e774922013. View Article : Google Scholar : PubMed/NCBI

17 

van der Heyden MA, van Kempen MJ, Tsuji Y, Rook MB, Jongsma HJ and Opthof T: P19 embryonal carcinoma cells: A suitable model system for cardiac electrophysiological differentiation at the molecular and functional level. Cardiovasc Res. 58:410–422. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Wen J, Xia Q, Lu C, Yin L, Hu J, Gong Y, Yin B, Monzen K, Yuan J, Qiang B, et al: Proteomic analysis of cardiomyocytes differentiation in mouse embryonic carcinoma P19CL6 cells. J Cell Biochem. 102:149–160. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

20 

Hoelscher SC, Doppler SA, Dreßen M, Lahm H, Lange R and Krane M: MicroRNAs: Pleiotropic players in congenital heart disease and regeneration. J Thorac Dis. 9 (Suppl 1):S64–S81. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Nemer M: Genetic insights into normal and abnormal heart development. Cardiovasc Pathol. 17:48–54. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Bajolle F, Zaffran S and Bonnet D: Genetics and embryological mechanisms of congenital heart diseases. Arch Cardiovasc Dis. 102:59–63. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Andersen TA, Troelsen Kde L and Larsen LA: Of mice and men: Molecular genetics of congenital heart disease. Cell Mol Life Sci. 71:1327–1352. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K, et al: GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 424:443–447. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Pabst S, Wollnik B, Rohmann E, Hintz Y, Glänzer K, Vetter H, Nickenig G and Grohé C: A novel stop mutation truncating critical regions of the cardiac transcription factor NKX2-5 in a large family with autosomal-dominant inherited congenital heart disease. Clin Res Cardiol. 97:39–42. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al: Initial sequencing and analysis of the human genome. Nature. 409:860–921. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Sallam T, Sandhu J and Tontonoz P: Long noncoding RNA discovery in cardiovascular disease: Decoding form to function. Circ Res. 122:155–166. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Zangrando J, Zhang L, Vausort M, Maskali F, Marie PY, Wagner DR and Devaux Y: Identification of candidate long non-coding RNAs in response to myocardial infarction. BMC Genomics. 15:4602014. View Article : Google Scholar : PubMed/NCBI

29 

Kurian L, Aguirre A, Sancho-Martinez I, Benner C, Hishida T, Nguyen TB, Reddy P, Nivet E, Krause MN, Nelles DA, et al: Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development. Circulation. 131:1278–1290. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Grote P, Wittler L, Hendrix D, Koch F, Währisch S, Beisaw A, Macura K, Bläss G, Kellis M, Werber M and Herrmann BG: The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 24:206–14. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Ang SY, Uebersohn A, Spencer CI, Huang Y, Lee JE, Ge K and Bruneau BG: KMT2D regulates specific programs in heart development via histone H3 lysine 4 di-methylation. Development. 143:810–821. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Cloos PA, Christensen J, Agger K and Helin K: Erasing the methyl mark: Histone demethylases at the center of cellular differentiation and disease. Genes Dev. 22:1115–1140. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Song G, Shen Y, Ruan Z, Li X, Chen Y, Yuan W, Ding X, Zhu L and Qian L: LncRNA-uc.167 influences cell proliferation, apoptosis and differentiation of P19 cells by regulating Mef2c. Gene. 590:97–108. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A and Bozzoni I: A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 147:358–369. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Szenker E, Lacoste N and Almouzni G: A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. Cell Rep. 1:730–740. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Dilg D, Saleh RN, Phelps SE, Rose Y, Dupays L, Murphy C, Mohun T, Anderson RH, Scambler PJ and Chapgier AL: HIRA is required for heart development and directly regulates Tnni2 and Tnnt3. PLoS One. 11:e01610962016. View Article : Google Scholar : PubMed/NCBI

37 

Ju ZR, Wang HJ, Ma XJ, Ma D and Huang GY: HIRA gene is lower expressed in the myocardium of patients with tetralogy of fallot. Chin Med J (Engl). 129:2403–2408. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhang, Q., Cheng, Z., Yu, Z., Zhu, C., & Qian, L. (2019). Role of lncRNA uc.457 in the differentiation and maturation of cardiomyocytes. Molecular Medicine Reports, 19, 4927-4934. https://doi.org/10.3892/mmr.2019.10132
MLA
Zhang, Q., Cheng, Z., Yu, Z., Zhu, C., Qian, L."Role of lncRNA uc.457 in the differentiation and maturation of cardiomyocytes". Molecular Medicine Reports 19.6 (2019): 4927-4934.
Chicago
Zhang, Q., Cheng, Z., Yu, Z., Zhu, C., Qian, L."Role of lncRNA uc.457 in the differentiation and maturation of cardiomyocytes". Molecular Medicine Reports 19, no. 6 (2019): 4927-4934. https://doi.org/10.3892/mmr.2019.10132