Open Access

Comprehensive genomic and prognostic analysis of the IL‑17 family genes in lung cancer

  • Authors:
    • Tingting Liao
    • Jinshuo Fan
    • Zhilei Lv
    • Juanjuan Xu
    • Feng Wu
    • Guanghai Yang
    • Qi Huang
    • Mengfei Guo
    • Guorong Hu
    • Mei Zhou
    • Limin Duan
    • Sufei Wang
    • Yang Jin
  • View Affiliations

  • Published online on: April 15, 2019     https://doi.org/10.3892/mmr.2019.10164
  • Pages: 4906-4918
  • Copyright: © Liao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The six members of the interleukin (IL)‑17 gene family (IL‑17A‑F) have been identified in various types of cancer. Although lung cancer is the leading cause of cancer‑related death worldwide and IL‑17A was found to play a critical role in lung cancer, there is little knowledge concerning the association between the other five members of the IL‑17 family and lung cancer. The genetic mutations and expression of IL‑17 family members were investigated using the Catalogue of Somatic Mutations in Cancer (COSMIC), Oncomine, and cBio Cancer Genomics Portal (cBioPortal) databases. Prognostic values and interaction networks of the members were assessed by the Kaplan‑Meier plotter, Search Tool for the Retrieval of Interacting Genes (STRING) database and FunRich software. The results found that, across 5,238 lung cancer patients in the cBioPortal, the results of IL‑17 family gene alteration frequencies and types showed that IL‑17A, IL‑25 and IL‑17F exhibited higher alteration frequencies (2, 2.1 and 1.9%, respectively), and gene amplification accounted for the majority of changes. IL‑17B, IL‑17C and IL‑17D exhibited lower alteration frequencies (0.8, 1.1 and 1.1%, respectively), and deep deletion accounted for the majority of changes. The rates of point mutations in IL‑17A through IL‑17F family genes in lung cancer were 0.66, 0.18, 0.13, 0.09, 0.27 and 0.44% in the COSMIC database. Within the Oncomine database, five datasets showed that IL‑17D was significantly decreased in lung cancer, while no dataset showed a significant difference in the expression of IL‑17A, IL‑17B, IL‑17C, IL‑25 or IL17‑F between lung cancer and normal controls. The frequencies of IL‑17A, IL‑17B and IL‑17C mRNA upregulation in lung squamous cell carcinoma were lower than those in lung adenocarcinoma (2.7, 1.9 and 2.1%, respectively), whereas the frequencies of IL‑17D, IL‑25 and IL‑17F mRNA upregulation were higher in lung squamous cell carcinoma than those in lung adenocarcinoma (3, 6 and 6%, respectively). IL‑17A and IL‑17B were unrelated to overall survival (p=0.11; P=0.17), whereas IL‑17C, IL‑17D, IL‑25 and IL‑17F influenced prognosis (P=0.0023, P=0.0059, P=0.039 and P=0.0017, respectively) according to the Kaplan‑Meier plotter. Moreover, the expression level of IL‑17C was the highest in lung tissues, and IL‑17 family genes mainly participate in the ‘IFN‑γ pathway’ according to the STRING database and Funrich software. In conclusion, we performed the first comprehensive investigation of the IL‑17 gene family in lung cancer, including gene mutation, mRNA expression levels, prognostic values and network pathways. Our results revealed that IL‑17 family gene mutation rates were in general low and that amplification and deep deletion were the main mutation type. The expression and function of IL‑17A and IL‑17B in lung cancer are still not fully elucidated and warrant research with larger sample sizes. IL‑17D was significantly decreased in lung cancer and was correlated with better OS. Studies of IL‑17C‑F in lung cancer are limited. Further experimental studies on the association between IL‑17D and lung cancer progression are needed to identify more effective therapeutic targets for lung cancer.

References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Nikšić M, Bonaventure A, Valkov M, Johnson CJ, Estève J, et al: Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 391:1023–1075. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Wu F, Xu J, Huang Q, Han J, Duan L, Fan J, Lv Z, Guo M, Hu G, Chen L, et al: The role of interleukin-17 in lung cancer. Mediators Inflamm. 2016:84940792016. View Article : Google Scholar : PubMed/NCBI

4 

Zhang Q, Liu S, Ge D, Zhang Q, Xue Y, Xiong Z, Abdel-Mageed AB, Myers L, Hill SM, Rowan BG, et al: Interleukin-17 promotes formation and growth of prostate adenocarcinoma in mouse models. Cancer Res. 72:2589–2599. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Akbay EA, Koyama S, Liu Y, Dries R, Bufe LE, Silkes M, Alam MM, Magee DM, Jones R, Jinushi M, et al: Interleukin-17A promotes lung tumor progression through neutrophil attraction to tumor sites and mediating resistance to PD-1 blockade. J Thorac Oncol. 12:1268–1279. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Numasaki M, Fukushi J, Ono M, Narula SK, Zavodny PJ, Kudo T, Robbins PD, Tahara H and Lotze MT: Interleukin-17 promotes angiogenesis and tumor growth. Blood. 101:2620–2627. 2003. View Article : Google Scholar : PubMed/NCBI

7 

Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D and Yu H: IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med. 206:1457–1464. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Kryczek I, Wei S, Szeliga W, Vatan L and Zou W: Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood. 114:357–359. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Gu FM, Li QL, Gao Q, Jiang JH, Zhu K, Huang XY, Pan JF, Yan J, Hu JH, Wang Z, et al: IL-17 induces AKT-dependent IL-6/JAK2/STAT3 activation and tumor progression in hepatocellular carcinoma. Mol Cancer. 10:1502011. View Article : Google Scholar : PubMed/NCBI

10 

Chen JG, Xia JC, Liang XT, Pan K, Wang W, Lv L, Zhao JJ, Wang QJ, Li YQ, Chen SP, et al: Intratumoral expression of IL-17 and its prognostic role in gastric adenocarcinoma patients. Int J Biol Sci. 7:53–60. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Huang CK, Yang CY, Jeng YM, Chen CL, Wu HH, Chang YC, Ma C, Kuo WH, Chang KJ, Shew JY and Lee WH: Autocrine/paracrine mechanism of interleukin-17B receptor promotes breast tumorigenesis through NF-κB-mediated antiapoptotic pathway. Oncogene. 33:2968–2977. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Wu HH, Hwang-Verslues WW, Lee WH, Huang CK, Wei PC, Chen CL, Shew JY, Lee EY, Jeng YM, Tien YW, et al: Targeting IL-17B-IL-17RB signaling with an anti-IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines. J Exp Med. 212:333–349. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Bie Q, Sun C, Gong A, Li C, Su Z, Zheng D, Ji X, Wu Y, Guo Q, Wang S and Xu H: Non-tumor tissue derived interleukin-17B activates IL-17RB/AKT/β-catenin pathway to enhance the stemness of gastric cancer. Sci Rep. 6:254472016. View Article : Google Scholar : PubMed/NCBI

14 

Pfeifer P, Voss M, Wonnenberg B, Hellberg J, Seiler F, Lepper PM, Bischoff M, Langer F, Schäfers HJ, Menger MD, et al: IL-17C is a mediator of respiratory epithelial innate immune response. Am J Respir Cell Mol Biol. 48:415–421. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Jungnickel C, Schmidt LH, Bittigkoffer L, Wolf L, Wolf A, Ritzmann F, Kamyschnikow A, Herr C, Menger MD, Spieker T, et al: IL-17C mediates the recruitment of tumor-associated neutrophils and lung tumor growth. Oncogene. 36:4182–4190. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Song X, Gao H, Lin Y, Yao Y, Zhu S, Wang J, Liu Y, Yao X, Meng G, Shen N, et al: Alterations in the microbiota drive interleukin-17C production from intestinal epithelial cells to promote tumorigenesis. Immunity. 40:140–152. 2014. View Article : Google Scholar : PubMed/NCBI

17 

O'Sullivan T, Saddawi-Konefka R, Gross E, Tran M, Mayfield SP, Ikeda H and Bui JD: Interleukin-17D mediates tumor rejection through recruitment of natural killer cells. Cell Rep. 7:989–998. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Yin SY, Jian FY, Chen YH, Chien SC, Hsieh MC, Hsiao PW, Lee WH, Kuo YH and Yang NS: Induction of IL-25 secretion from tumour-associated fibroblasts suppresses mammary tumour metastasis. Nat Commun. 7:113112016. View Article : Google Scholar : PubMed/NCBI

19 

Jiang Z, Chen J, Du X, Cheng H, Wang X and Dong C: IL-25 blockade inhibits metastasis in breast cancer. Protein Cell. 8:191–201. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Furuta S, Jeng YM, Zhou L, Huang L, Kuhn I, Bissell MJ and Lee WH: IL-25 causes apoptosis of IL-25R-expressing breast cancer cells without toxicity to nonmalignant cells. Sci Transl Med. 3:78ra312011. View Article : Google Scholar : PubMed/NCBI

21 

Luo Y, Yang Z, Su L, Shan J, Xu H, Xu Y, Liu L, Zhu W, Chen X, Liu C, et al: Non-CSCs nourish CSCs through interleukin-17E-mediated activation of NF-κB and JAK/STAT3 signaling in human hepatocellular carcinoma. Cancer Lett. 375:390–399. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Liu Y, Zhao X, Sun X, Li Y, Wang Z, Jiang J, Han H, Shen W, Corrigan CJ and Sun Y: Expression of IL-17A, E, and F and their receptors in human prostatic cancer: Comparison with benign prostatic hyperplasia. Prostate. 75:1844–1856. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Xie Y, Sheng W, Xiang J, Ye Z and Yang J: Interleukin-17F suppresses hepatocarcinoma cell growth via inhibition of tumor angiogenesis. Cancer Invest. 28:598–607. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Ding L, Hu EL, Xu YJ, Huang XF, Zhang DY, Li B, Hu QG, Ni YH and Hou YY: Serum IL-17F combined with VEGF as potential diagnostic biomarkers for oral squamous cell carcinoma. Tumour Biol. 36:2523–2529. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding M, Bamford S, Cole C, Ward S, et al: COSMIC: Exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res 43 (Database Issue). D805–D811. 2015. View Article : Google Scholar

26 

Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB, Anstet MJ, Kincead-Beal C, Kulkarni P, et al: Oncomine 3.0: Genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia. 9:166–180. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Győrffy B, Surowiak P, Budczies J and Lánczky A: Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One. 8:e822412013. View Article : Google Scholar : PubMed/NCBI

28 

Yu T, Jia W, An Q, Cao X and Xiao G: Bioinformatic analysis of GLI1 and related signaling pathways in chemosensitivity of gastric cancer. Med Sci Monit. 24:1847–1855. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al: The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2:401–404. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, et al: The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39 (Database Issue). D561–D568. 2011. View Article : Google Scholar

31 

Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson NA, Mouradov D, Sieber OM, Simpson RJ, Salim A, et al: FunRich: An open access standalone functional enrichment and interaction network analysis tool. Proteomics. 15:2597–2601. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Cancer Genome Atlas Research Network, . Comprehensive molecular profiling of lung adenocarcinoma. Nature. 511:543–550. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, Marotz C, Giannopoulou E, Chakravarthi BV, Varambally S, et al: Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 22:298–305. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Eirew P, Steif A, Khattra J, Ha G, Yap D, Farahani H, Gelmon K, Chia S, Mar C, Wan A, et al: Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature. 518:422–426. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Hou J, Aerts J, den Hamer B, van Ijcken W, den Bakker M, Riegman P, van der Leest C, van der Spek P, Foekens JA, Hoogsteden HC, et al: Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PLoS One. 5:e103122010. View Article : Google Scholar : PubMed/NCBI

36 

Beer DG, Kardia SL, Huang CC, Giordano TJ, Levin AM, Misek DE, Lin L, Chen G, Gharib TG, Thomas DG, et al: Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med. 8:816–824. 2002. View Article : Google Scholar : PubMed/NCBI

37 

Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, van de Rijn M, Rosen GD, Perou CM, Whyte RI, et al: Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA. 98:13784–13789. 2001. View Article : Google Scholar : PubMed/NCBI

38 

Selamat SA, Chung BS, Girard L, Zhang W, Zhang Y, Campan M, et al: Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression. Genome Res 22 (7). 1197–1211. 2012. View Article : Google Scholar

39 

Landi MT, Dracheva T, Rotunno M, Figueroa JD, Liu H, Dasgupta A, Mann FE, Fukuoka J, Hames M, Bergen AW, et al: Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS One. 3:e16512008. View Article : Google Scholar : PubMed/NCBI

40 

Okayama H, Kohno T, Ishii Y, Shimada Y, Shiraishi K, Iwakawa R, Furuta K, Tsuta K, Shibata T, Yamamoto S, et al: Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 72:100–111. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, Kovatich AJ, Benz CC, Levine DA, Lee AV, et al: An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 173:400–416.e11. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Gaffen SL: Recent advances in the IL-17 cytokine family. Curr Opin Immunol. 23:613–619. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Chen X, Wan J, Liu J, Xie W, Diao X, Xu J, Zhu B and Chen Z: Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer. 69:348–354. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, Lin Z and Zhu B: IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun. 407:348–354. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Lin Q, Xue L, Tian T, Zhang B, Guo L, Lin G, Chen Z, Fan K and Gu X: Prognostic value of serum IL-17 and VEGF levels in small cell lung cancer. Int J Biol Markers. 30:e359–e363. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Pan B, Che D, Cao J, Shen J, Jin S, Zhou Y, Liu F, Gu K, Man Y, Shang L and Yu Y: Interleukin-17 levels correlate with poor prognosis and vascular endothelial growth factor concentration in the serum of patients with non-small cell lung cancer. Biomarkers. 20:232–239. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Wang XF, Zhu YT, Wang JJ, Zeng DX, Mu CY, Chen YB, Lei W, Zhu YH and Huang JA: The prognostic value of interleukin-17 in lung cancer: A systematic review with meta-analysis based on Chinese patients. PLoS One. 12:e01851682017. View Article : Google Scholar : PubMed/NCBI

48 

Wei L, Wang H, Yang F, Ding Q and Zhao J: Interleukin-17 potently increases non-small cell lung cancer growth. Mol Med Rep. 13:1673–1680. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Pan B, Shen J, Cao J, Zhou Y, Shang L, Jin S, Cao S, Che D, Liu F and Yu Y: Interleukin-17 promotes angiogenesis by stimulating VEGF production of cancer cells via the STAT3/GIV signaling pathway in non-small-cell lung cancer. Sci Rep. 5:160532015. View Article : Google Scholar : PubMed/NCBI

50 

Huang Q, Duan L, Qian X, Fan J, Lv Z, Zhang X, Han J, Wu F, Guo M, Hu G, et al: IL-17 promotes angiogenic factors IL-6, IL-8, and Vegf production via Stat1 in lung adenocarcinoma. Sci Rep. 6:365512016. View Article : Google Scholar : PubMed/NCBI

51 

Li Q, Han Y, Fei G, Guo Z, Ren T and Liu Z: IL-17 promoted metastasis of non-small-cell lung cancer cells. Immunol Lett. 148:144–150. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Lu L, Pan K, Zheng HX, Li JJ, Qiu HJ, Zhao JJ, Weng DS, Pan QZ, Wang DD, Jiang SS, et al: IL-17A promotes immune cell recruitment in human esophageal cancers and the infiltrating dendritic cells represent a positive prognostic marker for patient survival. J Immunother. 36:451–458. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Punt S, van Vliet ME, Spaans VM, de Kroon CD, Fleuren GJ, Gorter A and Jordanova ES: FoxP3(+) and IL-17(+) cells are correlated with improved prognosis in cervical adenocarcinoma. Cancer Immunol Immunother. 64:745–753. 2015. View Article : Google Scholar : PubMed/NCBI

54 

He Y, Du Y, Wei S, Shi J, Mei Z, Qian L, Chen Z and Jie Z: IL-17A and IL-17F single nucleotide polymorphisms associated with lung cancer in Chinese population. Clin Respir J. 11:230–242. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Ma QY, Chen J, Wang SH, Wu N, Hao ZH and Chen XF: Interleukin 17A genetic variations and susceptibility to non-small cell lung cancer. APMIS. 123:194–198. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Kaabachi W, ben Amor A, Kaabachi S, Rafrafi A, Tizaoui K and Hamzaoui K: Interleukin-17A and −17F genes polymorphisms in lung cancer. Cytokine. 66:23–29. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Li Z, Liu Y, Cao D, Jiang M and Luo F: IL-17A and IL-17F polymorphisms and gastric cancer risk: A meta-analysis. Genet Mol Res. 14:7008–7017. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Wróbel T, Gębura K, Wysoczańska B, Jaźwiec B, Dobrzyńska O, Mazur G, Kuliczkowski K and Bogunia-Kubik K: IL-17F gene polymorphism is associated with susceptibility to acute myeloid leukemia. J Cancer Res Clin Oncol. 140:1551–1555. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Omrane I, Baroudi O, Bougatef K, Mezlini A, Abidi A, Medimegh I, Stambouli N, Ayari H, Kourda N, Uhrhammer N, et al: Significant association between IL23R and IL17F polymorphisms and clinical features of colorectal cancer. Immunol Lett. 158:189–194. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Cheng S, Shao Z, Liu X, Guo L, Zhang X, Na Q, Chen X, Ma Y, Zheng J, Song B and Liu J: Interleukin 17A polymorphism elevates gene expression and is associated with increased risk of nonsmall cell lung cancer. DNA Cell Biol. 34:63–68. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Rožman P and Švajger U: The tolerogenic role of IFN-γ. Cytokine Growth Factor Rev. 41:40–53. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Xu C, Hao K, Yu L and Zhang X: Serum interleukin-17 as a diagnostic and prognostic marker for non-small cell lung cancer. Biomarkers. 19:287–290. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Xu B, Guenther JF, Pociask DA, Wang Y, Kolls JK, You Z, Chandrasekar B, Shan B, Sullivan DE and Morris GF: Promotion of lung tumor growth by interleukin-17. Am J Physiol Lung Cell Mol Physiol. 307:L497–L508. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Li Y, Cao ZY, Sun B, Wang GY, Fu Z, Liu YM, Kong QF, Wang JH, Zhang Y, Xu XY and Li HL: Effects of IL-17A on the occurrence of lung adenocarcinoma. Cancer Biol Ther. 12:610–616. 2014. View Article : Google Scholar

65 

Numasaki M, Watanabe M, Suzuki T, Takahashi H, Nakamura A, McAllister F, Hishinuma T, Goto J, Lotze MT, Kolls JK and Sasaki H: IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol. 175:6177–6189. 2005. View Article : Google Scholar : PubMed/NCBI

66 

Zhao C, Li Y, Zhang W, Zhao D, Ma L, Ma P, Yang F, Wang Y, Shu Y and Qiu W: IL17 induces NSCLC A549 cell proliferation via the upregulation of HMGA1, resulting in an increased cyclin D1 expression. Int J Oncol. Mar 7–2018.DOI: 10.3892/ijo.2018.4307.

67 

Chen X, Xie Q, Cheng X, Diao X, Cheng Y, Liu J, Xie W, Chen Z and Zhu B: Role of interleukin-17 in lymphangiogenesis in non-small-cell lung cancer: Enhanced production of vascular endothelial growth factor C in non-small-cell lung carcinoma cells. Cancer Sci. 101:2384–2390. 2010. View Article : Google Scholar : PubMed/NCBI

68 

You R, DeMayo FJ, Liu J, Cho SN, Burt BM, Creighton CJ, Casal RF, Lazarus DR, Lu W, Tung HY, et al: IL17A regulates tumor latency and metastasis in lung adeno and squamous SQ.2b and AD.1 cancer. Cancer Immunol Res. 6:645–657. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Gu K, Li MM, Shen J, Liu F, Cao JY, Jin S and Yu Y: Interleukin-17-induced EMT promotes lung cancer cell migration and invasion via NF-κB/ZEB1 signal pathway. Am J Cancer Res. 5:1169–1179. 2015.PubMed/NCBI

70 

Kulig P, Burkhard S, Mikita-Geoffroy J, Croxford AL, Hövelmeyer N, Gyülvészi G, Gorzelanny C, Waisman A, Borsig L and Becher B: IL17A-mediated endothelial breach promotes metastasis formation. Cancer Immunol Res. 4:26–32. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Chang SH, Mirabolfathinejad SG, Katta H, Cumpian AM, Gong L, Caetano MS, Moghaddam SJ and Dong C: T helper 17 cells play a critical pathogenic role in lung cancer. Proc Natl Acad Sci USA. 111:5664–5669. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Liu L, Ge D, Ma L, Mei J, Liu S, Zhang Q, Ren F, Liao H, Pu Q, Wang T and You Z: Interleukin-17 and prostaglandin E2 are involved in formation of an M2 macrophage-dominant microenvironment in lung cancer. J Thorac Oncol. 7:1091–1100. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Yang YF, Lee YC, Lo S, Chung YN, Hsieh YC, Chiu WC and Yuan SF: A positive feedback loop of IL-17B-IL-17RB activates ERK/β-catenin to promote lung cancer metastasis. Cancer Lett. 422:44–55. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Liao C, Yu ZB, Meng G, Wang L, Liu QY, Chen LT, Feng SS, Tu HB, Li YF and Bai L: Association between Th17-related cytokines and risk of non-small cell lung cancer among patients with or without chronic obstructive pulmonary disease. Cancer. 121 (Suppl 17):S3122–S3129. 2015. View Article : Google Scholar

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liao, T., Fan, J., Lv, Z., Xu, J., Wu, F., Yang, G. ... Jin, Y. (2019). Comprehensive genomic and prognostic analysis of the IL‑17 family genes in lung cancer. Molecular Medicine Reports, 19, 4906-4918. https://doi.org/10.3892/mmr.2019.10164
MLA
Liao, T., Fan, J., Lv, Z., Xu, J., Wu, F., Yang, G., Huang, Q., Guo, M., Hu, G., Zhou, M., Duan, L., Wang, S., Jin, Y."Comprehensive genomic and prognostic analysis of the IL‑17 family genes in lung cancer". Molecular Medicine Reports 19.6 (2019): 4906-4918.
Chicago
Liao, T., Fan, J., Lv, Z., Xu, J., Wu, F., Yang, G., Huang, Q., Guo, M., Hu, G., Zhou, M., Duan, L., Wang, S., Jin, Y."Comprehensive genomic and prognostic analysis of the IL‑17 family genes in lung cancer". Molecular Medicine Reports 19, no. 6 (2019): 4906-4918. https://doi.org/10.3892/mmr.2019.10164