Open Access

Endophilin 1 knockdown prevents synaptic dysfunction induced by oligomeric amyloid β

  • Authors:
    • Yichen Yin
    • Caihui Cha
    • Fengming Wu
    • Jiong Li
    • Sumei Li
    • Xiaonan Zhu
    • Jifeng Zhang
    • Guoqing Guo
  • View Affiliations

  • Published online on: April 12, 2019     https://doi.org/10.3892/mmr.2019.10158
  • Pages: 4897-4905
  • Copyright: © Yin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Amyloid β (Aβ) has been reported to have an important role in the cognitive deficits of Alzheimer's disease (AD), as oligomeric Aβ promotes synaptic dysfunction and triggers neuronal death. Recent evidence has associated an endocytosis protein, endophilin 1, with AD, as endophilin 1 levels have been reported to be markedly increased in the AD brain. The increase in endophilin 1 levels in neurons is associated with an increase in the activation of the stress kinase JNK, with subsequent neuronal death. In the present study, whole‑cell patch‑clamp recording demonstrated that oligomeric Aβ caused synaptic dysfunction and western blotting revealed that endophilin 1 was highly expressed prior to neuronal death of cultured hippocampal neurons. Furthermore, RNA interference and electrophysiological recording techniques in cultured hippocampal neurons demonstrated that knockdown of endophilin 1 prevented synaptic dysfunction induced by Aβ. Thus, a potential role for endophilin 1 in Aβ‑induced postsynaptic dysfunction has been identified, indicating a possible direction for the prevention of postsynaptic dysfunction in cognitive impairment and suggesting that endophilin may be a potential target for the clinical treatment of AD.

References

1 

delEtoile J and Adeli H: Graph theory and brain connectivity in Alzheimer's disease. Neuroscientist. 23:616–626. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Lane CA, Hardy J and Schott JM: Alzheimer's disease. Eur J Neurol. 25:59–70. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Luo J, Wärmländer SK, Graslund A and Abrahams JP: Cross-interactions between the alzheimer disease amyloid-β peptide and other amyloid proteins: A further aspect of the amyloid cascade hypothesis. J Biol Chem. 291:16485–16493. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Jamasbi E, Wade JD, Separovic F and Hossain MA: Amyloid Beta (Aβ) Peptide and factors that play important roles in Alzheimer's disease. Curr Med Chem. 23:884–892. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Pini L, Pievani M, Bocchetta M, Altomare D, Bosco P, Cavedo E, Galluzzi S, Marizzoni M and Frisoni GB: Brain atrophy in Alzheimer's disease and aging. Ageing Res Rev. 30:25–48. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Holtzman DM, Morris JC and Goate AM: Alzheimer's disease: The challenge of the second century. Sci Transl Med. 3:77sr12011. View Article : Google Scholar : PubMed/NCBI

7 

Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, et al: Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 352:712–716. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Mucke L and Selkoe DJ: Neurotoxicity of amyloid β-protein: Synaptic and network dysfunction. Cold Spring Harb Perspect Med. 2:a0063382012. View Article : Google Scholar : PubMed/NCBI

9 

Tu S, Okamoto S, Lipton SA and Xu H: Oligomeric Aβ-induced synaptic dysfunction in Alzheimer's disease. Mol Neurodegener. 9:482014. View Article : Google Scholar : PubMed/NCBI

10 

Selkoe DJ: Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res. 192:106–113. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Laurén J, Gimbel DA, Nygaard HB, Gilbert JW and Strittmatter SM: Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature. 457:1128–1132. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Parameshwaran K, Sims C, Kanju P, Vaithianathan T, Shonesy BC, Dhanasekaran M, Bahr BA and Suppiramaniam V: Amyloid beta-peptide Abeta(1–42) but not Abeta(1–40) attenuates synaptic AMPA receptor function. Synapse. 61:367–374. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Ting JT, Kelley BG, Lambert TJ, Cook DG and Sullivan JM: Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms. Proc Natl Acad Sci USA. 104:353–358. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Benilova I, Karran E and De Strooper B: The toxic Aβ oligomer and Alzheimer's disease: An emperor in need of clothes. Nat Neurosci. 15:349–357. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Zeng Y, Zhao D and Xie CW: Neurotrophins enhance CaMKII activity and rescue amyloid-β-induced deficits in hippocampal synaptic plasticity. J Alzheimers Dis. 21:823–831. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Schmid AW, Freir DB and Herron CE: Inhibition of LTP in vivo by beta-amyloid peptide in different conformational states. Brain Res. 1197:135–142. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ and Selkoe DJ: Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 416:535–539. 2002. View Article : Google Scholar : PubMed/NCBI

18 

Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM and Selkoe D: Soluble oligomers of amyloid beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron. 62:788–801. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Walsh DM, Townsend M, Podlisny MB, Shankar GM, Fadeeva JV, El Agnaf O, Hartley DM and Selkoe DJ: Certain inhibitors of synthetic amyloid beta-peptide (Abeta) fibrillogenesis block oligomerization of natural A beta and thereby rescue long-term potentiation. J Neurosci. 25:2455–2462. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Ringstad N, Nemoto Y and De Camilli P: The SH3p4/Sh3p8/SH3p13 protein family: Binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc Natl Acad Sci USA. 94:8569–8574. 1997. View Article : Google Scholar : PubMed/NCBI

21 

Giachino C, Lantelme E, Lanzetti L, Saccone S, Bella Valle G and Migone N: A novel SH3-containing human gene family preferentially expressed in the central nervous system. Genomics. 41:427–434. 1997. View Article : Google Scholar : PubMed/NCBI

22 

Gad H, Ringstad N, Löw P, Kjaerulff O, Gustafsson J, Wenk M, Di Paolo G, Nemoto Y, Crun J, Ellisman MH, et al: Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin. Neuron. 27:301–312. 2000. View Article : Google Scholar : PubMed/NCBI

23 

Huttner WB and Schmidt A: Lipids, lipid modification and lipid-protein interaction in membrane budding and fission-insights from the roles of endophilin A1 and synaptophysin in synaptic vesicle endocytosis. Curr Opin Neurobiol. 10:543–551. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Milosevic I, Giovedi S, Lou X, Raimondi A, Collesi C, Shen H, Paradise S, O'Toole E, Ferguson S, Cremona O and De Camilli P: Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron. 72:587–601. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Chowdhury S, Shepherd JD, Okuno H, Lyford G, Petralia RS, Plath N, Kuhl D, Huganir RL and Worley PF: Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron. 52:445–459. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Ren Y, Xu HW, Davey F, Taylor M, Aiton J, Coote P, Fang F, Yao J, Chen D, Chen JX, et al: Endophilin I expression is increased in the brains of Alzheimer disease patients. J Biol Chem. 283:5685–5691. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Zhang J, Fan J, Tian Q, Song Z, Zhang J and Chen Y: Characterization of two distinct modes of endophilin in clathrin-mediated endocytosis. Cell Signal. 24:2043–2050. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Tian Q, Zhang J, Fan J, Song Z and Chen Y: Endophilin isoforms have distinct characteristics in interactions with N-type Ca2+ channels and dynamin I. Neurosci Bull. 28:483–492. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Doherty GH, Beccano-Kelly D, Yan SD, Gunn-Moore FJ and Harvey J: Leptin prevents hippocampal synaptic disruption and neuronal cell death induced by amyloid β. Neurobiol Aging. 34:226–237. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Zhang J, Tan M, Yin Y, Ren B, Jiang N, Guo G and Chen Y: Distinct functions of endophilin isoforms in synaptic vesicle endocytosis. Neural Plast. 2015:3714962015. View Article : Google Scholar : PubMed/NCBI

31 

Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ and Ashe KH: Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci. 8:79–84. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S and Malinow R: AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron. 52:831–843. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Verstreken P, Kjaerulff O, Lloyd TE, Atkinson R, Zhou Y, Meinertzhagen IA and Bellen HJ: Endophilin mutations block clathrin-mediated endocytosis but not neurotransmitter release. Cell. 109:101–112. 2002. View Article : Google Scholar : PubMed/NCBI

34 

Anggono V and Huganir RL: Regulation of AMPA receptor trafficking and synaptic plasticity. Curr Opin Neurobiol. 22:461–469. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Zhang J, Yin Y, Ji Z, Cai Z, Zhao B, Li J, Tan M and Guo G: Endophilin2 Interacts with GluA1 to Mediate AMPA receptor endocytosis induced by oligomeric amyloid-β. Neural Plast. 2017:81970852017. View Article : Google Scholar : PubMed/NCBI

36 

Ringstad N, Nemoto Y and De Camilli P: Differential expression of endophilin 1 and 2 dimers at central nervous system synapses. J Biol Chem. 276:40424–40430. 2001. View Article : Google Scholar : PubMed/NCBI

37 

Wang DB, Kinoshita Y, Kinoshita C, Uo T, Sopher BL, Cudaback E, Keene CD, Bilousova T, Gylys K, Case A, et al: Loss of endophilin-B1 exacerbates Alzheimer's disease pathology. Brain. 138:2005–2019. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Care NRCU, Animals AUOL. Guide for the care use of laboratory animals. Washington (DC): National Academies Press (US); 2011

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Yin, Y., Cha, C., Wu, F., Li, J., Li, S., Zhu, X. ... Guo, G. (2019). Endophilin 1 knockdown prevents synaptic dysfunction induced by oligomeric amyloid β. Molecular Medicine Reports, 19, 4897-4905. https://doi.org/10.3892/mmr.2019.10158
MLA
Yin, Y., Cha, C., Wu, F., Li, J., Li, S., Zhu, X., Zhang, J., Guo, G."Endophilin 1 knockdown prevents synaptic dysfunction induced by oligomeric amyloid β". Molecular Medicine Reports 19.6 (2019): 4897-4905.
Chicago
Yin, Y., Cha, C., Wu, F., Li, J., Li, S., Zhu, X., Zhang, J., Guo, G."Endophilin 1 knockdown prevents synaptic dysfunction induced by oligomeric amyloid β". Molecular Medicine Reports 19, no. 6 (2019): 4897-4905. https://doi.org/10.3892/mmr.2019.10158