Open Access

Caffeic acid phenethyl ester attenuates nuclear factor‑κB‑mediated inflammatory responses in Müller cells and protects against retinal ganglion cell death

  • Authors:
    • Yanwen Jia
    • Shengqun Jiang
    • Chen Chen
    • Guohua Lu
    • Yang Xie
    • Xincheng Sun
    • Liqin Huang
  • View Affiliations

  • Published online on: April 11, 2019     https://doi.org/10.3892/mmr.2019.10151
  • Pages: 4863-4871
  • Copyright: © Jia et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Glaucoma is characterized by the death of retinal ganglion cells (RGCs) and visual field defects, and is a leading cause of blindness worldwide. Caffeic acid phenethyl ester (CAPE), a natural polyphenolic found in propolis from honeybee hives, can inhibit the activation of nuclear factor κ light‑chain‑enhancer of activated B cells (NF‑κB) and has therapeutic potential in inflammatory disease. The present study used a rat model of optic nerve crush (ONC) injury to investigate the effect of CAPE on glaucoma. The death of RGCs at day 14 was significantly reduced in CAPE‑treated animals compared with the non‑treated group according to Brn3a and TUNEL staining. In addition, CAPE decreased the severity of inflammation in the retina, reflected by the decreased expression of inflammatory cytokines, including interleukin (IL)‑8, IL‑6, inducible nitric oxide synthase, cycloooxygenase‑2, tumor necrosis factor‑α and chemokine C‑C ligand‑2, in CAPE‑treated rats. The hypertrophy of astrocytes and Müller cells (gliosis) caused by ONC was also found to be attenuated by CAPE, accompanied by the inhibition of NF‑κB signaling. Similarly, in vitro, CAPE suppressed the proliferation and migration of primary astrocytes induced by lipopolysaccharide, as well as the activation of NF‑κB. These results suggest that CAPE protected against RGC and attenuated inflammatory responses in a rat model of ONC by suppressing NF‑κB activation.

References

1 

Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R and Panda-Jonas S: Glaucoma. Lancet. 390:2183–2193. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Bourne RR, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, Jonas JB, Keeffe J, Leasher J, Naidoo K, et al: Causes of vision loss worldwide, 1990–2010: A systematic analysis. Lancet Glob Health. 1:e339–e349. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Stevens GA, White RA, Flaxman SR, Price H, Jonas JB, Keeffe J, Leasher J, Naidoo K, Pesudovs K, Resnikoff S, et al: Global prevalence of vision impairment and blindness: Magnitude and temporal trends, 1990–2010. Ophthalmology. 120:2377–2384. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Doozandeh A and Yazdani S: Neuroprotection in glaucoma. J Ophthalmic Vis Res. 11:209–220. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Tian K, Shibata-Germanos S, Pahlitzsch M and Cordeiro MF: Current perspective of neuroprotection and glaucoma. Clin Ophthalmol. 9:2109–2118. 2015.PubMed/NCBI

6 

Calkins DJ, Pekny M, Cooper ML and Benowitz L; Lasker/IRRF Initiative on Astrocytes and Glaucomatous Neurodegeneration Participants, : The challenge of regenerative therapies for the optic nerve in glaucoma. Exp Eye Res. 157:28–33. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Bond WS and Rex TS: Evidence that erythropoietin modulates neuroinflammation through differential action on neurons, astrocytes and microglia. Front Immunol. 5:5232014. View Article : Google Scholar : PubMed/NCBI

8 

Perez VL and Caspi RR: Immune mechanisms in inflammatory and degenerative eye disease. Trends Immunol. 36:354–363. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Cueva Vargas JL, Belforte N and Di Polo A: The glial cell modulator ibudilast attenuates neuroinflammation and enhances retinal ganglion cell viability in glaucoma through protein kinase A signaling. Neurobiol Dis. 93:156–171. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Xu Y, Yang B, Hu Y, Lu L, Lu X, Wang J, Xu F, Yu S, Huang J and Liang X: Wogonin prevents TLR4-NF-κB-medicated neuro-inflammation and improves retinal ganglion cells survival in retina after optic nerve crush. Oncotarget. 7:72503–72517. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Lindsey JD, Duong-Polk KX, Hammond D, Leung CK and Weinreb RN: Protection of injured retinal ganglion cell dendrites and unfolded protein response resolution after long-term dietary resveratrol. Neurobiol Aging. 36:1969–1981. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Akyol S, Ugurcu V, Balci M, Gurel A, Erden G, Cakmak O and Akyol O: Caffeic acid phenethyl ester: Its protective role against certain major eye diseases. J Ocul Pharmacol Ther. 30:700–708. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Natarajan K, Singh S, Burke TR Jr, Grunberger D and Aggarwal BB: Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci USA. 93:9090–9095. 1996. View Article : Google Scholar : PubMed/NCBI

14 

Parlakpinar H, Ozer MK, Ucar M, Gaffaroglu M, Vardi N, Koc M and Acet A: Protective effects of caffeic acid phenethyl ester (CAPE) on amikacin-induced nephrotoxicity in rats. Cell Biochem Funct. 24:363–367. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Kujumgiev A, Tsvetkova I, Serkedjieva Y, Bankova V, Christov R and Popov S: Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J Ethnopharmacol. 64:235–240. 1999. View Article : Google Scholar : PubMed/NCBI

16 

Ren J, Zhang N, Liao H, Chen S, Xu L, Li J, Yang Z, Deng W and Tang Q: Caffeic acid phenethyl ester attenuates pathological cardiac hypertrophy by regulation of MEK/ERK signaling pathway in vivo and vitro. Life Sci. 181:53–61. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Russo A, Cardile V, Sanchez F, Troncoso N, Vanella A and Garbarino JA: Chilean propolis: Antioxidant activity and antiproliferative action in human tumor cell lines. Life Sci. 76:545–558. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Tolba MF, Omar HA, Azab SS, Khalifa AE, Abdel-Naim AB and Abdel-Rahman SZ: Caffeic acid phenethyl ester: A review of its antioxidant activity, protective effects against ischemia-reperfusion injury and drug adverse reactions. Crit Rev Food Sci Nutr. 56:2183–2190. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Irmak MK, Fadillioglu E, Sogut S, Erdogan H, Gulec M, Ozer M, Yagmurca M and Gozukara ME: Effects of caffeic acid phenethyl ester and alpha-tocopherol on reperfusion injury in rat brain. Cell Biochem Funct. 21:283–289. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Amodio R, De Ruvo C, Sacchetti A, Di Santo A, Martelli N, Di Matteo V, Lorenzet R, Poggi A, Rotilio D, Cacchio M and Esposito E: Caffeic acid phenethyl ester blocks apoptosis induced by low potassium in cerebellar granule cells. Int J Dev Neurosci. 21:379–389. 2003. View Article : Google Scholar : PubMed/NCBI

21 

Zhong H, Cui L, Xu F, Chen L, Jiang L, Huang H, Xu J, Zhao X, Li L, Zeng S and Li M: Up-regulation of Wip1 involves in neuroinflammation of retinal astrocytes after optic nerve crush via NF-κB signaling pathway. Inflamm Res. 65:709–715. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Shi Y, Wu X, Gong Y, Qiu Y, Zhang H, Huang Z and Su K: Protective effects of caffeic acid phenethyl ester on retinal ischemia/reperfusion injury in rats. Curr Eye Res. 35:930–937. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Valapala M, Hose S, Gongora C, Dong L, Wawrousek EF, Samuel Zigler J Jr and Sinha D: Impaired endolysosomal function disrupts Notch signalling in optic nerve astrocytes. Nat Commun. 4:16292013. View Article : Google Scholar : PubMed/NCBI

24 

Mi H and Barres BA: Purification and characterization of astrocyte precursor cells in the developing rat optic nerve. J Neurosci. 19:1049–1061. 1999. View Article : Google Scholar : PubMed/NCBI

25 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

26 

Qu J and Jakobs TC: The time course of gene expression during reactive gliosis in the optic nerve. PLoS One. 8:e670942013. View Article : Google Scholar : PubMed/NCBI

27 

McKinnon SJ, Schlamp CL and Nickells RW: Mouse models of retinal ganglion cell death and glaucoma. Exp Eye Res. 88:816–824. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Schaub JA, Kimball EC, Steinhart MR, Nguyen C, Pease ME, Oglesby EN, Jefferys JL and Quigley HA: Regional retinal ganglion cell axon loss in a murine glaucoma model. Invest Ophthalmol Vis Sci. 58:2765–2773. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Wisely CE, Sayed JA, Tamez H, Zelinka C, Abdel-Rahman MH, Fischer AJ and Cebulla CM: The chick eye in vision research: An excellent model for the study of ocular disease. Prog Retin Eye Res. 61:72–97. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Rathnasamy G, Foulds WS, Ling EA and Kaur C: Glutamate inhibits the pro-survival effects of insulin-like growth factor-1 on retinal ganglion cells in hypoxic neonatal rat retina. Mol Neurobiol. 54:3453–3464. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Sobrado-Calvo P, Vidal-Sanz M and Villegas-Pérez MP: Rat retinal microglial cells under normal conditions, after optic nerve section, and after optic nerve section and intravitreal injection of trophic factors or macrophage inhibitory factor. J Comp Neurol. 501:866–878. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Bodeutsch N, Siebert H, Dermon C and Thanos S: Unilateral injury to the adult rat optic nerve causes multiple cellular responses in the contralateral site. J Neurobiol. 38:116–128. 1999. View Article : Google Scholar : PubMed/NCBI

33 

Rovere G, Nadal-Nicolás FM, Sobrado-Calvo P, García-Bernal D, Villegas-Pérez MP, Vidal-Sanz M and Agudo-Barriuso M: Topical treatment with bromfenac reduces retinal gliosis and inflammation after optic nerve crush. Invest Ophthalmol Vis Sci. 57:6098–6106. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Li X, Long J, He T, Belshaw R and Scott J: Integrated genomic approaches identify major pathways and upstream regulators in late onset Alzheimer's disease. Sci Rep. 5:123932015. View Article : Google Scholar : PubMed/NCBI

35 

Li Y, Wang LM, Xu JZ, Tian K, Gu CX and Li ZF: Gastrodia elata attenuates inflammatory response by inhibiting the NF-κB pathway in rheumatoid arthritis fibroblast-like synoviocytes. Biomed Pharmacother. 85:177–181. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Oguiza A, Recio C, Lazaro I, Mallavia B, Blanco J, Egido J and Gomez-Guerrero C: Peptide-based inhibition of IκB kinase/nuclear factor-κB pathway protects against diabetes-associated nephropathy and atherosclerosis in a mouse model of type 1 diabetes. Diabetologia. 58:1656–1667. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Saccà SC, Gandolfi S, Bagnis A, Manni G, Damonte G, Traverso CE and Izzotti A6: From DNA damage to functional changes of the trabecular meshwork in aging and glaucoma. Ageing Res Rev. 29:26–41. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Agapova OA, Kaufman PL and Hernandez MR: Androgen receptor and NFκB expression in human normal and glaucomatous optic nerve head astrocytes in vitro and in experimental glaucoma. Exp Eye Res. 82:1053–1059. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Erb C: Importance of the nuclear factor kappaB for the primary open angle glaucoma-a hypothesis. Klin Monbl Augenheilkd. 227:120–127. 2010.(In German). View Article : Google Scholar : PubMed/NCBI

40 

Khan MN, Lane ME, McCarron PA and Tambuwala MM: Caffeic acid phenethyl ester is protective in experimental ulcerative colitis via reduction in levels of pro-inflammatory mediators and enhancement of epithelial barrier function. Inflammopharmacology. 26:561–569. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Ak H, Gülşen İ, Karaaslan T, Alaca İ, Candan A, Koçak H, Atalay T, Çelikbilek A, Demir İ and Yılmaz T: The effects of caffeic acid phenethyl ester on inflammatory cytokines after acute spinal cord injury. Ulus Travma Acil Cerrahi Derg. 21:96–101. 2015.PubMed/NCBI

42 

Spaide RF: Retinal vascular cystoid macular edema: Review and new theory. Retina. 36:1823–1842. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Tura A, Schuettauf F, Monnier PP, Bartz-Schmidt KU and Henke-Fahle S: Efficacy of Rho-kinase inhibition in promoting cell survival and reducing reactive gliosis in the rodent retina. Invest Ophthalmol Vis Sci. 50:452–461. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Chrysostomou V, Rezania F, Trounce IA and Crowston JG: Oxidative stress and mitochondrial dysfunction in glaucoma. Curr Opin Pharmacol. 13:12–15. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Jia, Y., Jiang, S., Chen, C., Lu, G., Xie, Y., Sun, X., & Huang, L. (2019). Caffeic acid phenethyl ester attenuates nuclear factor‑κB‑mediated inflammatory responses in Müller cells and protects against retinal ganglion cell death. Molecular Medicine Reports, 19, 4863-4871. https://doi.org/10.3892/mmr.2019.10151
MLA
Jia, Y., Jiang, S., Chen, C., Lu, G., Xie, Y., Sun, X., Huang, L."Caffeic acid phenethyl ester attenuates nuclear factor‑κB‑mediated inflammatory responses in Müller cells and protects against retinal ganglion cell death". Molecular Medicine Reports 19.6 (2019): 4863-4871.
Chicago
Jia, Y., Jiang, S., Chen, C., Lu, G., Xie, Y., Sun, X., Huang, L."Caffeic acid phenethyl ester attenuates nuclear factor‑κB‑mediated inflammatory responses in Müller cells and protects against retinal ganglion cell death". Molecular Medicine Reports 19, no. 6 (2019): 4863-4871. https://doi.org/10.3892/mmr.2019.10151