Open Access

miR‑27b‑3p and miR‑607 cooperatively regulate BLM gene expression by directly targeting the 3'‑UTR in PC3 cells

  • Authors:
    • Yinglian Chen
    • Jiafu Zhao
    • Zhiqiang Duan
    • Ting Gong
    • Wei Chen
    • Sainan Wang
    • Houqiang Xu
  • View Affiliations

  • Published online on: April 5, 2019     https://doi.org/10.3892/mmr.2019.10135
  • Pages: 4819-4831
  • Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

BLM RecQ like helicase (BLM) has a pivotal role in genetic recombination, transcription, DNA replication and DNA repair, which presents the possibility of using BLM as an anti‑cancer target for treatment. However, the post‑transcriptional control regulation of BLM gene expression is not fully understood and limits the application of drugs targeting BLM for carcinoma therapy in the future. MicroRNAs (miRNAs) inhibit gene expression through interaction with the 3' untranslated region (3'‑UTR) of mRNA at the post‑transcriptional stage. Therefore, the current study screened for miRNAs that regulate BLM gene expression, with software predicting that miRNA (miR)‑27b‑3p, miR‑607, miR‑361‑3p, miR‑628‑5p and miR‑338‑3p. BLM gene expression levels in the PC3 prostate cancer cell line and RWPE‑2 normal prostate epithelium cell line were detected by reverse transcription‑quantitative PCR. Additionally, BLM mRNA levels were following miRNA overexpression for 24 and 48 h. For further miRNA filtration and validation, a dual‑luciferase reporter system and western blot analysis were performed, which demonstrated that miR‑27b‑3p and miR‑607 reduce BLM gene expression by directly targeting the BLM mRNA 3'‑UTR. A Box‑Behnken design experiment suggested that miR‑27b‑3p and miR‑607 have synergetic mutual effects on BLM gene expression. Finally, the suppressive effect of miR‑27b‑3p and miR‑607 on PC3 cell proliferation, colony formation, migration and invasion indicated the benefit of studying BLM as a drug target in cancer. In conclusion, the findings of the current provide evidence that miR‑27b‑3p and miR‑607 have an oncosuppressive function in PC3 cells and cooperatively downregulate BLM expression at the post‑transcriptional level.

References

1 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Pandita A, Manvati S, Singh SK, Vaishnavi S and Bamezai RN: Combined effect of microRNA, nutraceuticals and drug on pancreatic cancer cell lines. Chem Biol Interact. 233:56–64. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Shi S, Han L, Deng L, Zhang Y, Shen H, Gong T, Zhang Z and Sun X: Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. J Control Release. 194:228–237. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Futami K, Ogasawara S, Goto H, Yano H and Furuichi Y: RecQL1 DNA repair helicase: A potential tumor marker and therapeutic target against hepatocellular carcinoma. Int J Mol Med. 25:537–545. 2010.PubMed/NCBI

5 

Qian X, Feng S, Xie D, Feng D, Jiang Y and Zhang X: RecQ helicase BLM regulates prostate cancer cell proliferation and apoptosis. Oncol Lett. 14:4206–4212. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Bachrati CZ and Hickson ID: RecQ helicases: Suppressors of tumorigenesis and premature aging. Biochem J. 374:577–606. 2003. View Article : Google Scholar : PubMed/NCBI

7 

Sharma S, Doherty KM and Brosh RM Jr: Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J. 398:319–337. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Wu L: Role of the BLM helicase in replication fork management. DNA Repair (Amst). 6:936–944. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Nguyen GH, Dexheimer TS, Rosenthal AS, Chu WK, Singh DK, Mosedale G, Bachrati CZ, Schultz L, Sakurai M, Savitsky P, et al: A small molecule inhibitor of the BLM helicase modulates chromosome stability in human cells. Chem Biol. 20:55–62. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Laitman Y, Boker-Keinan L, Berkenstadt M, Liphsitz I, Weissglas-Volkov D, Ries-Levavi L, Sarouk I, Pras E and Friedman E: The risk for developing cancer in Israeli ATM, BLM, and FANCC heterozygous mutation carriers. Cancer Genet. 209:70–74. 2016. View Article : Google Scholar : PubMed/NCBI

11 

de Voer RM, Hahn MM, Mensenkamp AR, Hoischen A, Gilissen C, Henkes A, Spruijt L, van Zelst-Stams WA, Kets CM, Verwiel ET, et al: Deleterious germline BLM mutations and the risk for early-onset colorectal cancer. Sci Rep. 5:140602015. View Article : Google Scholar : PubMed/NCBI

12 

Böhm S and Bernstein KA: The role of post-translational modifications in fine-tuning BLM helicase function during DNA repair. DNA Repair (Amst). 22:123–132. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Suspitsin EN, Yanus GA, Sokolenko AP, Yatsuk OS, Zaitseva OA, Bessonov AA, Ivantsov AO, Heinstein VA, Klimashevskiy VF, Togo AV and Imyanitov EN: Development of breast tumors in CHEK2, NBN/NBS1 and BLM mutation carriers does not commonly involve somatic inactivation of the wild-type allele. Med Oncol. 31:8282014. View Article : Google Scholar : PubMed/NCBI

14 

Sassi A, Popielarski M, Synowiec E, Morawiec Z and Wozniak K: BLM and RAD51 genes polymorphism and susceptibility to breast cancer. Pathol Oncol Res. 19:451–459. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Matsuyama R, Okuzaki D, Okada M and Oneyama C: MicroRNA-27b suppresses tumor progression by regulating ARFGEF1 and focal adhesion signaling. Cancer Sci. 107:28–35. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Wen C, Liu X, Ma H, Zhang W and Li H: miR-338-3p suppresses tumor growth of ovarian epithelial carcinoma by targeting Runx2. Int J Oncol. 46:2277–2285. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Filipowicz W, Bhattacharyya SN and Sonenberg N: Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet. 9:102–114. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Chen D, Si W, Shen J, Du C, Lou W, Bao C, Zheng H, Pan J, Zhong G, Xu L, et al: miR-27b-3p inhibits proliferation and potentially reverses multi-chemoresistance by targeting CBLB/GRB2 in breast cancer cells. Cell Death Dis. 9:1882018. View Article : Google Scholar : PubMed/NCBI

19 

Sui GQ, Fei D, Guo F, Zhen X, Luo Q, Yin S and Wang H: MicroRNA-338-3p inhibits thyroid cancer progression through targeting AKT3. Am J Cancer Res. 7:1177–1187. 2017.PubMed/NCBI

20 

Hara ES, Ono M, Eguchi T, Kubota S, Pham HT, Sonoyama W, Tajima S, Takigawa M, Calderwood SK and Kuboki T: miRNA-720 controls stem cell phenotype, proliferation and differentiation of human dental pulp cells. PLoS One. 8:e835452013. View Article : Google Scholar : PubMed/NCBI

21 

Xu S, Yi XM, Zhang ZY, Ge JP and Zhou WQ: miR-129 predicts prognosis and inhibits cell growth in human prostate carcinoma. Mol Med Rep. 14:5025–5032. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Zhang G, Tian X, Li Y, Wang Z, Li X and Zhu C: miR-27b and miR-34a enhance docetaxel sensitivity of prostate cancer cells through inhibiting epithelial-to-mesenchymal transition by targeting ZEB1. Biomed Pharmacother. 97:736–744. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, et al: Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33:e1792005. View Article : Google Scholar : PubMed/NCBI

24 

Braoudaki M, Lambrou GI, Giannikou K, Milionis V, Stefanaki K, Birks DK, Prodromou N, Kolialexi A, Kattamis A, Spiliopoulou CA, et al: Microrna expression signatures predict patient progression and disease outcome in pediatric embryonal central nervous system neoplasms. J Hematol Oncol. 7:962014. View Article : Google Scholar : PubMed/NCBI

25 

Favreau AJ and Sathyanarayana P: miR-590-5p, miR-219-5p, miR-15b and miR-628-5p are commonly regulated by IL-3, GM-CSF and G-CSF in acute myeloid leukemia. Leuk Res. 36:334–341. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Wu X, Zheng Y, Han B and Dong X: Long noncoding RNA BLACAT1 modulates ABCB1 to promote oxaliplatin resistance of gastric cancer via sponging miR-361. Biomed Pharmacother. 99:832–838. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Zhang S, Liu Z, Wu L and Wang Y: MiR-361 targets Yes-associated protein (YAP) mRNA to suppress cell proliferation in lung cancer. Biochem Biophys Res Commun. 492:468–473. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Chiyomaru T, Seki N, Inoguchi S, Ishihara T, Mataki H, Matsushita R, Goto Y, Nishikawa R, Tatarano S, Itesako T, et al: Dual regulation of receptor tyrosine kinase genes EGFR and c-Met by the tumor-suppressive microRNA-23b/27b cluster in bladder cancer. Int J Oncol. 46:487–496. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Ning S, Xu H, Al-Shyoukh I, Feng J and Sun R: An application of a Hill-based response surface model for a drug combination experiment on lung cancer. Stat Med. 33:4227–4236. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Xiao Q, Wang L and Xu H: Application of kriging models for a drug combination experiment on lung cancer. Stat Med. 38:236–246. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Li C, Li L, Zhou HH, Xia C and He L: Improving Yield of 1,3-diglyceride by whole-cell lipase fromA. NigerGZUF36 catalyzed glycerolysis via medium optimization. J Braz Chem Soc. 26:247–254. 2015.

32 

Fang HB, Ross DD, Sausville E and Tan M: Experimental design and interaction analysis of combination studies of drugs with log-linear dose responses. Stat Med. 27:3071–3083. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Zhang Y, Shi B, Chen J, Hu L and Zhao C: MiR-338-3p targets pyruvate kinase M2 and affects cell proliferation and metabolism of ovarian cancer. Am J Transl Res. 8:3266–3273. 2016.PubMed/NCBI

34 

Mezlini AM, Wang B, Deshwar A, Morris Q and Goldenberg A: Identifying cancer specific functionally relevant miRNAs from gene expression and miRNA-to-gene networks using regularized regression. PLoS One. 8:e731682013. View Article : Google Scholar : PubMed/NCBI

35 

Rosenthal AS, Dexheimer TS, Nguyen G, Gileadi O, Vindigni A, Simeonov A, Jadhav A, Hickson I and Maloney DJ: Discovery of ML216, a small molecule inhibitor of bloom (BLM) helicase. Probe Reports from the NIH Molecular Libraries Program; Bethesda (MD): 2010

36 

Gupta A, Ahmad A, Singh H, Kaur S, K M N, Ansari MM, Jayamurugan G and Khan R: Nanocarrier composed of magnetite core coated with three polymeric shells mediates LCS-1 delivery for synthetic lethal therapy of BLM-defective colorectal cancer cells. Biomacromolecules. 19:803–815. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Chen, Y., Zhao, J., Duan, Z., Gong, T., Chen, W., Wang, S., & Xu, H. (2019). miR‑27b‑3p and miR‑607 cooperatively regulate BLM gene expression by directly targeting the 3'‑UTR in PC3 cells. Molecular Medicine Reports, 19, 4819-4831. https://doi.org/10.3892/mmr.2019.10135
MLA
Chen, Y., Zhao, J., Duan, Z., Gong, T., Chen, W., Wang, S., Xu, H."miR‑27b‑3p and miR‑607 cooperatively regulate BLM gene expression by directly targeting the 3'‑UTR in PC3 cells". Molecular Medicine Reports 19.6 (2019): 4819-4831.
Chicago
Chen, Y., Zhao, J., Duan, Z., Gong, T., Chen, W., Wang, S., Xu, H."miR‑27b‑3p and miR‑607 cooperatively regulate BLM gene expression by directly targeting the 3'‑UTR in PC3 cells". Molecular Medicine Reports 19, no. 6 (2019): 4819-4831. https://doi.org/10.3892/mmr.2019.10135