Open Access

Signature microRNAs and long noncoding RNAs in laryngeal cancer recurrence identified using a competing endogenous RNA network

  • Authors:
    • Zhengyi Tang
    • Ganguan Wei
    • Longcheng Zhang
    • Zhiwen Xu
  • View Affiliations

  • Published online on: April 10, 2019     https://doi.org/10.3892/mmr.2019.10143
  • Pages: 4806-4818
  • Copyright: © Tang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The aim of the present study was to identify novel microRNA (miRNA) or long noncoding RNA (lncRNA) signatures of laryngeal cancer recurrence and to investigate the regulatory mechanisms associated with this malignancy. Datasets of recurrent and nonrecurrent laryngeal cancer samples were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus database (GSE27020 and GSE25727) to examine differentially expressed miRNAs (DE‑miRs), lncRNAs (DE‑lncRs) and mRNAs (DEGs). miRNA‑mRNA and lncRNA‑miRNA networks were constructed by investigating the associations among these RNAs in various databases. Subsequently, the interactions identified were combined into a competing endogenous RNA (ceRNA) regulatory network. Feature genes in the miRNA‑mRNA network were identified via topological analysis and a recursive feature elimination algorithm. A support vector machine (SVM) classifier was established using the betweenness centrality values in the miRNA‑mRNA network, consisting of 32 optimal feature‑coding genes. The classification effect was tested using two validation datasets. Furthermore, coding genes in the ceRNA network were examined via pathway enrichment analyses. In total, 21 DE‑lncRs, 507 DEGs and 55 DE‑miRs were selected. The SVM classifier exhibited an accuracy of 94.05% (79/84) for sample classification prediction in the TCGA dataset, and 92.66 and 91.07% in the two validation datasets. The ceRNA regulatory network comprised 203 nodes, corresponding to mRNAs, miRNAs and lncRNAs, and 346 lines, corresponding to the interactions among RNAs. In particular, the interactions with the highest scores were HLA complex group 4 (HCG4)‑miR‑33b, HOX transcript antisense RNA (HOTAIR)‑miR‑1‑MAGE family member A2 (MAGEA2), EMX2 opposite strand/antisense RNA (EMX2OS)‑miR‑124‑calcitonin related polypeptide α (CALCA) and EMX2OS‑miR‑124‑γ‑aminobutyric acid type A receptor γ2 subunit (GABRG2). Gene enrichment analysis of the genes in the ceRNA network identified that 11 pathway terms and 16 molecular function terms were significantly enriched. The SVM classifier based on 32 feature coding genes exhibited high accuracy in the classification of laryngeal cancer samples. miR‑1, miR‑33b, miR‑124, HOTAIR, HCG4 and EMX2OS may be novel biomarkers of recurrent laryngeal cancer, and HCG4‑miR‑33b, HOTAIR‑miR‑1‑MAGEA2 and EMX2OS‑miR‑124‑CALCA/GABRG2 may be associated with the molecular mechanisms regulating recurrent laryngeal cancer.

References

1 

Piccirillo JF: Importance of comorbidity in head and neck cancer. Laryngoscope. 125:22422015. View Article : Google Scholar : PubMed/NCBI

2 

Hoffman HT, Porter K, Karnell LH, Cooper JS, Weber RS, Langer CJ, Ang KK, Gay G, Stewart A and Robinson RA: Laryngeal cancer in the United States: Changes in demographics, patterns of care, and survival. Laryngoscope. 116 (Suppl 111):1–13. 2006. View Article : Google Scholar : PubMed/NCBI

3 

Tamaki A, Miles BA, Lango M, Kowalski L and Zender CA: AHNS Series: Do you know your guidelines? Review of current knowledge on laryngeal cancer. Head Neck. 40:170–181. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Wei KR, Zheng RS, Liang ZH, Sun KX, Zhang SW, Li ZM, Zeng HM, Zou XN, Chen WQ and He J: Incidence and mortality of laryngeal cancer in China, 2014. Zhonghua Zhong Liu Za Zhi. 40:736–743. 2018.(In Chinese). PubMed/NCBI

5 

Haas I, Hauser U and Ganzer U: The dilemma of follow-up in head and neck cancer patients. Eur Arch Otorhinolaryngol. 258:177–183. 2001. View Article : Google Scholar : PubMed/NCBI

6 

Johansen LV, Grau C and Overgaard J: Glottic carcinoma--patterns of failure and salvage treatment after curative radiotherapy in 861 consecutive patients. Radiother Oncol. 63:257–267. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Dai MY, Wang Y, Chen C, Li F, Xiao BK, Chen SM and Tao ZZ: Phenethyl isothiocyanate induces apoptosis and inhibits cell proliferation and invasion in Hep-2 laryngeal cancer cells. Oncol Rep. 35:2657–2664. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Miao S, Mao X, Zhao S, Song K, Xiang C, Lv Y, Jiang H, Wang L, Li B, Yang X, et al: miR-217 inhibits laryngeal cancer metastasis by repressing AEG-1 and PD-L1 expression. Oncotarget. 8:62143–62153. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Saito K, Inagaki K, Kamimoto T, Ito Y, Sugita T, Nakajo S, Hirasawa A, Iwamaru A, Ishikura T, Hanaoka H, et al: MicroRNA-196a is a putative diagnostic biomarker and therapeutic target for laryngeal cancer. PLoS One. 8:e714802013. View Article : Google Scholar : PubMed/NCBI

10 

Yang JQ, Liu HX, Liang Z, Sun YM and Wu M: Over-expression of p53, p21 and Cdc2 in histologically negative surgical margins is correlated with local recurrence of laryngeal squamous cell carcinoma. Int J Clin Exp Pathol. 7:4295–4302. 2014.PubMed/NCBI

11 

Yang JQ, Liang Z, Wu M, Sun YM and Liu HX: Expression of p27 and PTEN and clinical characteristics in early laryngeal squamous cell carcinoma and their correlation with recurrence. Int J Clin Exp Pathol. 8:5715–5720. 2015.PubMed/NCBI

12 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Jin C, Zhang Y and Li J: Upregulation of MiR-196a promotes cell proliferation by downregulating p27kip1 in laryngeal cancer. Biol Res. 49:402016. View Article : Google Scholar : PubMed/NCBI

15 

Sun X, Liu B, Zhao XD, Wang LY and Ji WY: MicroRNA-221 accelerates the proliferation of laryngeal cancer cell line Hep-2 by suppressing Apaf-1. Oncol Rep. 33:1221–1226. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Li M, Chen SM, Chen C, Zhang ZX, Dai MY, Zhang LB, Wang SB, Dai Q and Tao ZZ: microRNA-299-3p inhibits laryngeal cancer cell growth by targeting human telomerase reverse transcriptase mRNA. Mol Med Rep. 11:4645–4649. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Yang T, Li S, Liu J, Yin D, Yang X and Tang Q: lncRNA-NKILA/NF-κB feedback loop modulates laryngeal cancer cell proliferation, invasion, and radioresistance. Cancer Med. 7:2048–2063. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Bai Z, Shi E, Wang Q, Dong Z and Xu P: A potential panel of two-long non-coding RNA signature to predict recurrence of patients with laryngeal cancer. Oncotarget. 8:69641–69650. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Fountzilas E, Kotoula V, Angouridakis N, Karasmanis I, Wirtz RM, Eleftheraki AG, Veltrup E, Markou K, Nikolaou A, Pectasides D, et al: Identification and validation of a multigene predictor of recurrence in primary laryngeal cancer. PLoS One. 8:e704292013. View Article : Google Scholar : PubMed/NCBI

20 

Carvalho B, Bengtsson H, Speed TP and Irizarry RA: Exploration, normalization, and genotype calls of high-density oligonucleotide SNP array data. Biostatistics. 8:485–499. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Fountzilas E, Markou K, Vlachtsis K, Nikolaou A, Arapantoni-Dadioti P, Ntoula E, Tassopoulos G, Bobos M, Konstantinopoulos P, Fountzilas G, et al: Identification and validation of gene expression models that predict clinical outcome in patients with early-stage laryngeal cancer. Ann Oncol. 23:2146–2153. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e472015. View Article : Google Scholar : PubMed/NCBI

23 

Robinson MD, McCarthy DJ and Smyth GK: edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26:139–140. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Kohl M, Wiese S and Warscheid B: Cytoscape: Software for visualization and analysis of biological networks. Methods Mol Biol. 696:291–303. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Uoh KI, Kahng B and Kim D: Universal behavior of load distribution in scale-free networks. Phys Rev Lett. 87:2787012001. View Article : Google Scholar : PubMed/NCBI

26 

Eisen MB, Spellman PT, Brown PO and Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 95:14863–14868. 1998. View Article : Google Scholar : PubMed/NCBI

27 

Baur B and Bozdag S: A Feature Selection Algorithm to Compute Gene Centric Methylation from Probe Level Methylation Data. PLoS One. 11:e01489772016. View Article : Google Scholar : PubMed/NCBI

28 

Zhang X, Lu X, Shi Q, Xu XQ, Leung HC, Harris LN, Iglehart JD, Miron A, Liu JS and Wong WH: Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics. 7:1972006. View Article : Google Scholar : PubMed/NCBI

29 

Kanehisa M and Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30. 2000. View Article : Google Scholar : PubMed/NCBI

30 

Rivals I, Personnaz L, Taing L and Potier MC: Enrichment or depletion of a GO category within a class of genes: Which test? Bioinformatics. 23:401–407. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Ge X, Lyu P, Cao Z, Li J, Guo G, Xia W and Gu Y: Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting. Biochem Biophys Res Commun. 463:1115–1121. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Wei C, Wang S, Ye ZQ and Chen ZQ: miR-206 inhibits renal cell cancer growth by targeting GAK. J Huazhong Univ Sci Technolog Med Sci. 36:852–858. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Ren XL, He GY, Li XM, Men H, Yi LZ, Lu GF, Xin SN, Wu PX, Li YL, Liao WT, et al: MicroRNA-206 functions as a tumor suppressor in colorectal cancer by targeting FMNL2. J Cancer Res Clin Oncol. 142:581–592. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Zhang T, Liu M, Wang C, Lin C, Sun Y and Jin D: Down-regulation of MiR-206 promotes proliferation and invasion of laryngeal cancer by regulating VEGF expression. Anticancer Res. 31:3859–3863. 2011.PubMed/NCBI

35 

Yang Q, Zhang C, Huang B, Li H, Zhang R, Huang Y and Wang J: Downregulation of microRNA-206 is a potent prognostic marker for patients with gastric cancer. Eur J Gastroenterol Hepatol. 25:953–957. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Zheng J, Xiao X, Wu C, Huang J, Zhang Y, Xie M, Zhang M and Zhou L: The role of long non-coding RNA HOTAIR in the progression and development of laryngeal squamous cell carcinoma interacting with EZH2. Acta Otolaryngol. 137:90–98. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Wang J, Zhou Y, Lu J, Sun Y, Xiao H, Liu M and Tian L: Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med Oncol. 31:1482014. View Article : Google Scholar : PubMed/NCBI

38 

Li D, Feng J, Wu T, Wang Y, Sun Y, Ren J and Liu M: Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. Am J Pathol. 182:64–70. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Di W, Li Q, Shen W, Guo H and Zhao S: The long non-coding RNA HOTAIR promotes thyroid cancer cell growth, invasion and migration through the miR-1-CCND2 axis. Am J Cancer Res. 7:1298–1309. 2017.PubMed/NCBI

40 

Yu D, Zhang C and Gui J: RNA-binding protein HuR promotes bladder cancer progression by competitively binding to the long noncoding HOTAIR with miR-1. OncoTargets Ther. 10:2609–2619. 2017. View Article : Google Scholar

41 

Glazer CA, Smith IM, Bhan S, Sun W, Chang SS, Pattani KM, Westra W, Khan Z and Califano JA: The role of MAGEA2 in head and neck cancer. Arch Otolaryngol Head Neck Surg. 137:286–293. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Rayner KJ, Suárez Y, Dávalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ and Fernández-Hernando C: MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 328:1570–1573. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Lin Y, Liu AY, Fan C, Zheng H, Li Y, Zhang C, Wu S, Yu D, Huang Z, Liu F, et al: MicroRNA-33b Inhibits Breast Cancer Metastasis by Targeting HMGA2, SALL4 and Twist1. Sci Rep. 5:99952015. View Article : Google Scholar : PubMed/NCBI

44 

Sun Q, Zhang W, Guo Y, Li Z, Chen X, Wang Y, Du Y, Zang W and Zhao G: Curcumin inhibits cell growth and induces cell apoptosis through upregulation of miR-33b in gastric cancer. Tumour Biol. 37:13177–13184. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Karatas OF: Antiproliferative potential of miR-33a in laryngeal cancer Hep-2 cells via targeting PIM1. Head Neck. 40:2455–2461. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Burfoot RK, Jensen CJ, Field J, Stankovich J, Varney MD, Johnson LJ, Butzkueven H, Booth D, Bahlo M, Tait BD, et al: SNP mapping and candidate gene sequencing in the class I region of the HLA complex: Searching for multiple sclerosis susceptibility genes in Tasmanians. Tissue Antigens. 71:42–50. 2008.PubMed/NCBI

47 

Wang M, Meng B and Liu Y, Yu J, Chen Q and Liu Y: MiR-124 Inhibits Growth and Enhances Radiation-Induced Apoptosis in Non-Small Cell Lung Cancer by Inhibiting STAT3. Cell Physiol Biochem. 44:2017–2028. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Chen Z, Liu S, Tian L, Wu M, Ai F, Tang W, Zhao L, Ding J, Zhang L and Tang A: miR-124 and miR-506 inhibit colorectal cancer progression by targeting DNMT3B and DNMT1. Oncotarget. 6:38139–38150. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Roman-Gomez J, Agirre X, Jiménez-Velasco A, Arqueros V, Vilas-Zornoza A, Rodriguez-Otero P, Martin-Subero I, Garate L, Cordeu L, San José-Eneriz E, et al: Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol. 27:1316–1322. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Peng XH, Huang HR, Lu J, Liu X, Zhao FP, Zhang B, Lin SX, Wang L, Chen HH, Xu X, et al: MiR-124 suppresses tumor growth and metastasis by targeting Foxq1 in nasopharyngeal carcinoma. Mol Cancer. 13:1862014. View Article : Google Scholar : PubMed/NCBI

51 

Patnaik SK, Kannisto E, Knudsen S and Yendamuri S: Evaluation of microRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection. Cancer Res. 70:36–45. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Zhao Y, Ling Z, Hao Y, Pang X, Han X, Califano JA, Shan L and Gu X: MiR-124 acts as a tumor suppressor by inhibiting the expression of sphingosine kinase 1 and its downstream signaling in head and neck squamous cell carcinoma. Oncotarget. 8:25005–25020. 2017.PubMed/NCBI

53 

Zhang M, Piao L, Datta J, Lang JC, Xie X, Teknos TN, Mapp AK and Pan Q: miR-124 Regulates the Epithelial-Restricted with Serine Box/Epidermal Growth Factor Receptor Signaling Axis in Head and Neck Squamous Cell Carcinoma. Mol Cancer Ther. 14:2313–2320. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Spigoni G, Gedressi C and Mallamaci A: Regulation of Emx2 expression by antisense transcripts in murine cortico-cerebral precursors. PLoS One. 5:e86582010. View Article : Google Scholar : PubMed/NCBI

55 

Yang CA, Bauer S, Ho YC, Sotzny F, Chang JG and Scheibenbogen C: The expression signature of very long non-coding RNA in myalgic encephalomyelitis/chronic fatigue syndrome. J Transl Med. 16:2312018. View Article : Google Scholar : PubMed/NCBI

56 

Wang L, Sun Y, Sun Y, Meng L and Xu X: First case of AML with rare chromosome translocations: A case report of twins. BMC Cancer. 18:4582018. View Article : Google Scholar : PubMed/NCBI

57 

Zhu Y, Ren S, Jing T, Cai X, Liu Y, Wang F, Zhang W, Shi X, Chen R, Shen J, et al: Clinical utility of a novel urine-based gene fusion TTTY15-USP9Y in predicting prostate biopsy outcome. Urol Oncol. 33:384.e9–384.e20. 2015. View Article : Google Scholar

58 

Kao SY, Tsai MM, Wu CH, Chen JJ, Tseng SH, Lin SC and Chang KW: Co-targeting of multiple microRNAs on factor-Inhibiting hypoxia-Inducible factor gene for the pathogenesis of head and neck carcinomas. Head Neck. 38:522–528. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Hu S, Ewertz M, Tufano RP, Brait M, Carvalho AL, Liu D, Tufaro AP, Basaria S, Cooper DS, Sidransky D, et al: Detection of serum deoxyribonucleic acid methylation markers: A novel diagnostic tool for thyroid cancer. J Clin Endocrinol Metab. 91:98–104. 2006. View Article : Google Scholar : PubMed/NCBI

60 

Afifi S, Gholamhosseini H and Sinha R: SVM classifier on chip for melanoma detection. In: Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; Seogwipo: pp. 270–274. 2017, PubMed/NCBI

61 

Tuo Y, An N and Zhang M: Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods. Mol Med Rep. 17:4281–4290. 2018.PubMed/NCBI

62 

Zhao J, Cheng W, He X, Liu Y, Li J, Sun J, Li J, Wang F and Gao Y: Construction of a specific SVM classifier and identification of molecular markers for lung adenocarcinoma based on lncRNA-miRNA-mRNA network. OncoTargets Ther. 11:3129–3140. 2018. View Article : Google Scholar

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Tang, Z., Wei, G., Zhang, L., & Xu, Z. (2019). Signature microRNAs and long noncoding RNAs in laryngeal cancer recurrence identified using a competing endogenous RNA network. Molecular Medicine Reports, 19, 4806-4818. https://doi.org/10.3892/mmr.2019.10143
MLA
Tang, Z., Wei, G., Zhang, L., Xu, Z."Signature microRNAs and long noncoding RNAs in laryngeal cancer recurrence identified using a competing endogenous RNA network". Molecular Medicine Reports 19.6 (2019): 4806-4818.
Chicago
Tang, Z., Wei, G., Zhang, L., Xu, Z."Signature microRNAs and long noncoding RNAs in laryngeal cancer recurrence identified using a competing endogenous RNA network". Molecular Medicine Reports 19, no. 6 (2019): 4806-4818. https://doi.org/10.3892/mmr.2019.10143