Open Access

Novel agent #2714 potently inhibits lung cancer growth by suppressing cell proliferation and by inducing apoptosis in vitro and in vivo

  • Authors:
    • Wenjie Lu
    • Qianqian Sun
    • Bo Chen
    • Yan Li
    • Youzhi Xu
    • Siying Wang
  • View Affiliations

  • Published online on: April 2, 2019     https://doi.org/10.3892/mmr.2019.10114
  • Pages: 4788-4796
  • Copyright: © Lu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The use of small molecule compounds to inhibit cell proliferation is one of the most promising approaches in cancer therapy. In the present study, a cell viability assay, flow cytometry analysis, western blotting and mouse xenograft models were used to investigate the anticancer activities of #2714 and its underlying mechanisms in lung cancer. The present in vitro results suggested that #2714 significantly inhibited the viability of the human non‑small cell lung cancer line SPC‑A1 in a concentration‑ and time‑dependent manner, with a half‑maximal inhibitory concentration value of 5.54 µM after 48 h of treatment. Additionally, #2714 inhibited SPC‑A1 cell proliferation via the Wnt/β‑catenin pathway and by impairing mitochondrial membrane potential. The protein expression levels of Wnt 3a, Wnt 5a/b, phosphorylated (p)‑β‑catenin, p‑glycogen synthase kinase 3β, and p‑mitogen‑activated protein kinase 14 were downregulated following treatment with #2714. Furthermore, using a mouse xenograft model, #2714 was identified to significantly inhibit tumor growth and to decrease cancer cell proliferation in vivo. #2714 may represent a novel effective anticancer compound targeting lung cancer cells. Additionally, #2714 was able to induce apoptosis and decrease cell proliferation in SPC‑A1 cells via the Wnt/β‑catenin pathway.

References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Blandin Knight S, Crosbie PA, Balata H, Chudziak J, Hussell T and Dive C: Progress and prospects of early detection in lung cancer. Open Biol. 7:1700702017. View Article : Google Scholar : PubMed/NCBI

3 

Akamatsu H, Mori K, Naito T, Imai H, Ono A, Shukuya T, Taira T, Kenmotsu H, Murakami H, Endo M, et al: Progression-free survival at 2 years is a reliable surrogate marker for the 5-year survival rate in patients with locally advanced non-small cell lung cancer treated with chemoradiotherapy. BMC Cancer. 14:182014. View Article : Google Scholar : PubMed/NCBI

4 

Allemani C, Matsuda T, Di Carlo V, Harewood R, Matz M, Nikšić M, Bonaventure A, Valkov M, Johnson CJ, Estève J, et al: Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet. 391:1023–1075. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Fennell DA, Summers Y, Cadranel J, Benepal T, Christoph DC, Lal R, Das M, Maxwell F, Visseren-Grul C and Ferry D: Cisplatin in the modern era: The backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat Rev. 44:42–50. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Brückl W, Tufman A and Huber RM: Advanced non-small cell lung cancer (NSCLC) with activating EGFR mutations: First-line treatment with afatinib and other EGFR TKIs. Expert Rev Anticancer Ther. 17:143–155. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Lu WJ, Peng W, Sun QQ, Li YH, Chen B, Yu LT, Xu YZ, Wang SY and Zhao YL: #2714, a novel active inhibitor with potent arrested G2/M phase and antitumor efficacy in preclinical models. Cell Death Discov. 4:242018. View Article : Google Scholar : PubMed/NCBI

8 

Xu YZ, Zheng RL, Zhou Y, Peng F, Lin HJ, Bu Q, Mao YQ, Yu LT, Yang L and Yang SY: Small molecular anticancer agent SKLB703 induces apoptosis in human hepatocellular carcinoma cells via the mitochondrial apoptotic pathway in vitro and inhibits tumor growth in vivo. Cancer Lett. 313:44–53. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Xiao GH, Jeffers M, Bellacosa A, Mitsuuchi Y, Vande Woude GF and Testa JR: Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc Natl Acad Sci USA. 98:247–252. 2001. View Article : Google Scholar : PubMed/NCBI

10 

Downward J: Use of RNA interference libraries to investigate oncogenic signalling in mammalian cells. Oncogene. 23:8376–8383. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES and Wang X: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 91:479–489. 1997. View Article : Google Scholar : PubMed/NCBI

12 

Printz C: Targeted therapy in lung cancer: Survival, quality of life improved for some patients. Cancer. 120:2625–2626. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Ramalingam SS, Blackhall F, Krzakowski M, Barrios CH, Park K, Bover I, Seog Heo D, Rosell R, Talbot DC, Frank R, et al: Randomized phase II study of dacomitinib (PF-00299804), an irreversible pan-human epidermal growth factor receptor inhibitor, versus erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol. 30:3337–3344. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Hartmann JT, Haap M, Kopp HG and Lipp HP: Tyrosine kinase inhibitors-a review on pharmacology, metabolism and side effects. Curr Drug Metab. 10:470–481. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Anastas JN and Moon RT: WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 13:11–26. 2012. View Article : Google Scholar

16 

Brown K, Yang P, Salvador D, Kulikauskas R, Ruoholabaker H, Robitaille AM, Chien AJ, Moon RT and Sherwood V: WNT/β-catenin signaling regulates mitochondrial activity to alter the oncogenic potential of melanoma in a PTEN-dependent manner. Oncogene. 36:3119–3136. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Regmi SC, Park SY, Kim SJ, Banskota S, Shah S, Kim DH and Kim JA: The anti-tumor activity of Succinyl Macrolactin A is mediated through the β-catenin destruction complex via the suppression of tankyrase and PI3K/Akt. PLoS One. 10:e01417532015. View Article : Google Scholar : PubMed/NCBI

18 

Zhan T, Rindtorff N and Boutros M: Wnt signaling in cancer. Oncogene. 36:1461–1473. 2018. View Article : Google Scholar

19 

Clevers H and Nusse R: Wnt/β-catenin signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Akiri G, Cherian MM, Vijayakumar S, Liu G, Bafico A and Aaronson SA: Wnt pathway aberrations including autocrine Wnt activation occur at high frequency in human non-small-cell lung carcinoma. Oncogene. 28:2163–2172. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Kreuzaler P and Watson CJ: Killing a cancer: What are the alternatives? Nat Rev Cancer. 12:411–424. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Shalini S, Dorstyn L, Dawar S and Kumar S: Old, new and emerging functions of caspases. Cell Death Differ. 22:526–539. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Pradelli LA, Bénéteau M and Ricci JE: Mitochondrial control of caspase-dependent and -independent cell death. Cell Mol Life Sci. 67:1589–1597. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Denisenko TV, Budkevich IN and Zhivotovsky B: Cell death-based treatment of lung adenocarcinoma. Cell Death Dis. 9:1172018. View Article : Google Scholar : PubMed/NCBI

25 

Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E and Boise LH: Caspase-9, caspase- 3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 14:322013. View Article : Google Scholar : PubMed/NCBI

26 

Azmi AS, Wang Z, Philip PA, Mohammad RM and Sarkar FH: Emerging Bcl-2 inhibitors for the treatment of cancer. Expert Opin Emerg Drugs. 16:59–70. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Wells A, Grahovac J, Wheeler S, Ma B and Lauffenburger D: Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol Sci. 34:283–289. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Xu YZ, Li YH, Lu WJ, Lu K, Wang CT, Li Y, Lin HJ, Kan LX, Yang SY, Wang SY and Zhao YL: YL4073 is a potent autophagy-stimulating antitumor agent in an in vivo model of Lewis lung carcinoma. Oncol Rep. 35:2081–2088. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Xu Y, Lu W, Yang P, Peng W, Wang C, Li M, Li Y, Li G, Meng N, Lin H, et al: A small molecular agent YL529 inhibits VEGF-D-induced lymphangiogenesis and metastasis in preclinical tumor models in addition to its known antitumor activities. BMC Cancer. 15:5252015. View Article : Google Scholar : PubMed/NCBI

30 

Zheng RL, Zeng XX, He HY, He J, Yang SY, Yu YT and Yang L: Facile synthesis of 6-Aryl-3-cyanopyridine-2-(1H)-thiones from Aryl Ketones. J Synthetic Commun. 42:1521–1531. 2012. View Article : Google Scholar

31 

Kilkenny C, Browne W, Cuthill IC, Emerson M and Altman DG; NC3Rs Reporting Guidelines Working Group, : Animal research: Reporting in vivo experiments: The ARRIVE guidelines. J Physiol. 160:1577–1579. 2010.

32 

Mitrofanova A, Aytes A, Zou M, Shen MM, Abate-Shen C and Califano A: Predicting drug response in human prostate cancer from preclinical analysis of in vivo mouse models. Cell Rep. 12:2060–2071. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Awazu Y, Nakamura K, Mizutani A, Kakoi Y, Iwata H, Yamasaki S, Miyamoto N, Imamura S, Miki H and Hori A: A novel inhibitor of c-Met and VEGF receptor tyrosine kinases with a broad spectrum of in vivo antitumor activities. Mol Cancer Ther. 12:913–924. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Niehrs C: The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 13:767–779. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Villanueva MT: Targeted therapies: Priming apoptosis. Nat Rev Clin Oncol. 10:672013. View Article : Google Scholar : PubMed/NCBI

36 

Sarosiek KA, Fraser C, Muthalagu N, BholaP D, Chang WT, McBrayer SK, Cantlon A, Fisch S, Golomb-Mello G, Ryan JA, et al: Developmental regulation of mitochondrial apoptosis by c-Myc governs age- and tissue-specific sensitivity to cancer therapeutics. Cancer Cell. 31:142–156. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Fulda S: The PI3K/Akt/mTOR pathway as therapeutic target in neuroblastoma. Curr Cancer Drug Targets. 9:729–737. 2014. View Article : Google Scholar

38 

Davidson SM, Lopaschuk GD, Spedding M and Beart PM: Mitochondrial pharmacology: Energy, injury and beyond. Br J Pharmacol. 171:1795–1797. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Lu, W., Sun, Q., Chen, B., Li, Y., Xu, Y., & Wang, S. (2019). Novel agent #2714 potently inhibits lung cancer growth by suppressing cell proliferation and by inducing apoptosis in vitro and in vivo. Molecular Medicine Reports, 19, 4788-4796. https://doi.org/10.3892/mmr.2019.10114
MLA
Lu, W., Sun, Q., Chen, B., Li, Y., Xu, Y., Wang, S."Novel agent #2714 potently inhibits lung cancer growth by suppressing cell proliferation and by inducing apoptosis in vitro and in vivo". Molecular Medicine Reports 19.6 (2019): 4788-4796.
Chicago
Lu, W., Sun, Q., Chen, B., Li, Y., Xu, Y., Wang, S."Novel agent #2714 potently inhibits lung cancer growth by suppressing cell proliferation and by inducing apoptosis in vitro and in vivo". Molecular Medicine Reports 19, no. 6 (2019): 4788-4796. https://doi.org/10.3892/mmr.2019.10114