Open Access

miRNA‑15a‑5p facilitates the bone marrow stem cell apoptosis of femoral head necrosis through the Wnt/β‑catenin/PPARγ signaling pathway

  • Authors:
    • Wan‑Li Zhang
    • Cheng‑Tao Chi
    • Xiang‑Hui Meng
    • Shao‑Dong Liang
  • View Affiliations

  • Published online on: April 4, 2019     https://doi.org/10.3892/mmr.2019.10130
  • Pages: 4779-4787
  • Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Bone marrow stem cells (BMSCs) are a group cells that function as an underlying cell source for bone tissue regeneration. However, the molecular mechanisms of how BMSCs are induced into apoptosis remains unclear. In the present study, it was demonstrated that the molecular mechanisms of BMSCs were exerted via microRNA‑15a‑5p (miR‑15a‑5p) in femoral head necrosis (FHN). Briefly, miRNA‑15a‑5p expression was elevated in a rat model of FHN. Overexpression of miR‑15a‑5p promoted the apoptosis of BMSCs and reduced cell growth through the Wnt/β‑catenin/peroxisome proliferator‑activated receptor γ (PPARγ) signaling pathway. Downregulation of miR‑15a‑5p reduced the apoptosis of BMSCs and promoted cell growth through the Wnt/β‑catenin/PPARγ signaling pathway. The activation of Wnt attenuated the effects of miR‑15a‑5p on the apoptosis of BMSCs via the β‑catenin/PPARγ signaling pathway. In conclusion, the present results indicated that miRNA‑15a‑5p was involved in the regulation of the apoptosis of BMSCs through regulating the Wnt/β‑catenin/PPARγ signaling pathway, which may serve an important role in the regulation of FHN.

References

1 

Daltro GC, Fortuna V, de Souza ES, Salles MM, Carreira AC, Meyer R, Freire SM and Borojevic R: Efficacy of autologous stem cell-based therapy for osteonecrosis of the femoral head in sickle cell disease: A five-year follow-up study. Stem Cell Res Ther. 6:1102015. View Article : Google Scholar : PubMed/NCBI

2 

Coleman R, Woodward E, Brown J, Cameron D, Bell R, Dodwell D, Keane M, Gil M, Davies C, Burkinshaw R, et al: Safety of zoledronic acid and incidence of osteonecrosis of the jaw (ONJ) during adjuvant therapy in a randomised phase III trial (AZURE: BIG 01–04) for women with stage II/III breast cancer. Breast Cancer Res Treat. 127:429–438. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Ripamonti CI, Cislaghi E, Mariani L and Maniezzo M: Efficacy and safety of medical ozone (O(3)) delivered in oil suspension applications for the treatment of osteonecrosis of the jaw in patients with bone metastases treated with bisphosphonates: Preliminary results of a phase I–II study. Oral Oncol. 47:185–190. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Vande Berg BC, Gilon R, Malghem J, Lecouvet F, Depresseux G and Houssiau FA: Correlation between baseline femoral neck marrow status and the development of femoral head osteonecrosis in corticosteroid-treated patients: A longitudinal study by MR imaging. Eur J Radiol. 58:444–449. 2006. View Article : Google Scholar : PubMed/NCBI

5 

Li X, Yuan Z, Wei X, Li H, Zhao G, Miao J, Wu D, Liu B, Cao S, An D, et al: Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta. J Mater Sci Mater Med. 27:772016. View Article : Google Scholar : PubMed/NCBI

6 

Shi S, Wu X, Wang X, Hao W, Miao H, Zhen L and Nie S: Differentiation of bone marrow mesenchymal stem cells to cardiomyocyte-like cells is regulated by the combined low dose treatment of transforming growth factor-β1 and 5-azacytidine. Stem Cells Int. 2016:38162562016. View Article : Google Scholar : PubMed/NCBI

7 

Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, Mazhari R, Boyle AJ, Zambrano JP, Rodriguez JE, et al: Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res. 107:913–922. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Li YG, Wei JN, Lu J, Wu XT and Teng GJ: Labeling and tracing of bone marrow mesenchymal stem cells for tendon-to-bone tunnel healing. Knee Surg Sports Traumatol Arthrosc. 19:2153–2158. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Rippo MR, Babini L, Prattichizzo F, Graciotti L, Fulgenzi G, Tomassoni Ardori F, Olivieri F, Borghetti G, Cinti S, Poloni A, et al: Low FasL levels promote proliferation of human bone marrow-derived mesenchymal stem cells, higher levels inhibit their differentiation into adipocytes. Cell Death Dis. 4:e5942013. View Article : Google Scholar : PubMed/NCBI

10 

De Luca L, Trino S, Laurenzana I, Simeon V, Calice G, Raimondo S, Podestà M, Santodirocco M, Di Mauro L, La Rocca F, et al: MiRNAs and piRNAs from bone marrow mesenchymal stem cell extracellular vesicles induce cell survival and inhibit cell differentiation of cord blood hematopoietic stem cells: A new insight in transplantation. Oncotarget. 7:6676–6692. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Ono M, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F, Takahashi RU, Yoshida M, Tsuda H, Tamura K and Ochiya T: Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal. 7:ra632014. View Article : Google Scholar : PubMed/NCBI

12 

Lee HK, Finniss S, Cazacu S, Bucris E, Ziv-Av A, Xiang C, Bobbitt K, Rempel SA, Hasselbach L, Mikkelsen T, et al: Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget. 4:346–361. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Liu XJ, Bai XG, Teng YL, Song L, Lu N and Yang RQ: miRNA-15a-5p regulates VEGFA in endometrial mesenchymal stem cells and contributes to the pathogenesis of endometriosis. Eur Rev Med Pharmacol Sci. 20:3319–3326. 2016.PubMed/NCBI

14 

Nakanishi A and Tsukamoto I: n-3 polyunsaturated fatty acids stimulate osteoclastogenesis through PPARγ-mediated enhancement of c-Fos expression, and suppress osteoclastogenesis through PPARγ-dependent inhibition of NFκB activation. J Nutr Biochem. 26:1317–1327. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Zhao XY, Chen XY, Zhang ZJ, Kang Y, Liao WM, Yu WH and Xiang AP: Expression patterns of transcription factor PPARγ and C/EBP family members during in vitro adipogenesis of human bone marrow mesenchymal stem cells. Cell Biol Int. 39:457–465. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Cheng H, Qiu L, Zhang H, Cheng M, Li W, Zhao X, Liu K, Lei L and Ma J: Arsenic trioxide promotes senescence and regulates the balance of adipogenic and osteogenic differentiation in human mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai). 43:204–209. 2011. View Article : Google Scholar : PubMed/NCBI

17 

He YF, Liu FY and Zhang WX: Tangeritin inhibits adipogenesis by down-regulating C/EBPα, C/EBPβ, and PPARγ expression in 3T3-L1 fat cells. Genet Mol Res. 14:13642–13648. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Liu HF, Gui MX, Dong H, Wang X and Li XW: Differential expression of AdipoR1, IGFBP3, PPARγ and correlative genes during porcine preadipocyte differentiation. In Vitro Cell Dev Biol Anim. 48:54–60. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Chen Y, Chen L, Yin Q, Gao H, Dong P, Zhang X and Kang J: Reciprocal interferences of TNF-α and Wnt1/β-catenin signaling axes shift bone marrow-derived stem cells towards osteoblast lineage after ethanol exposure. Cell Physiol Biochem. 32:755–765. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Pai P, Rachagani S, Dhawan P and Batra SK: Mucins and Wnt/β-catenin signaling in gastrointestinal cancers: An unholy nexus. Carcinogenesis. 37:223–232. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Conidi A, van den Berghe V and Huylebroeck D: Aptamers and their potential to selectively target aspects of EGF, Wnt/β-catenin and TGFβ-smad family signaling. Int J Mol Sci. 14:6690–6719. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Shi C, Huang F, Gu X, Zhang M, Wen J, Wang X, You L, Cui X, Ji C and Guo X: Adipogenic miRNA and meta-signature miRNAs involved in human adipocyte differentiation and obesity. Oncotarget. 7:40830–40845. 2016.PubMed/NCBI

23 

Dong YL, Zhou L, Li YL, Xiao K and Weng XS: Establishment and assessment of rat models of glucocorticoid-induced osteonecrosis. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 37:152–156. 2015.PubMed/NCBI

24 

Karakaplan M, Gülabi D, Topgül H and Elmali N: Does platelet-rich plasma have a favorable effect in the early stages of steroid-associated femoral head osteonecrosis in a rabbit model? Eklem Hastalik Cerrahisi. 28:107–113. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Miyata N, Kumagai K, Osaki M, Murata M, Tomita M, Hozumi A, Nozaki Y and Niwa M: Pentosan reduces osteonecrosis of femoral head in SHRSP. Clin Exp Hypertens. 32:511–516. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Wei J, Zhang Y, Luo Y, Wang Z, Bi S, Song D, Dai Y, Wang T, Qiu L, Wen L, et al: Aldose reductase regulates miR-200a-3p/141-3p to coordinate Keap1-Nrf2, Tgfβ1/2, and Zeb1/2 signaling in renal mesangial cells and the renal cortex of diabetic mice. Free Radic Biol Med. 67:91–102. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Duttenhoefer F, de Freitas RL, Loibl M, Bittermann G, Richards RG, Alini M and Verrier S: Endothelial progenitor cell fraction contained in bone marrow-derived mesenchymal stem cell populations impairs osteogenic differentiation. Biomed Res Int. 2015:6595422015. View Article : Google Scholar : PubMed/NCBI

29 

Wu G, Feng C, Hui G, Wang Z, Tan J, Luo L, Xue P, Wang Q and Chen X: Improving the osteogenesis of rat mesenchymal stem cells by chitosan-based-microRNA nanoparticles. Carbohydr Polym. 138:49–58. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Zhang G, Na Z, Ren B, Zhao X and Liu W: Impacts of fluorescent superparamagnetic iron oxide (SPIO)-labeled materials on biological characteristics and osteogenesis of bone marrow mesenchymal stem cells (BMSCs). Int J Clin Exp Med. 8:12172–12181. 2015.PubMed/NCBI

31 

Soleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y and Kaka G: The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts-an in vitro study. Lasers Med Sci. 27:423–430. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Yi F, Khan M, Gao H, Hao F, Sun M, Zhong L, Lu C, Feng X and Ma T: Increased differentiation capacity of bone marrow-derived mesenchymal stem cells in aquaporin-5 deficiency. Stem Cells Dev. 21:2495–2507. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Krejcik Z, Belickova M, Hrustincova A, Votavova H, Jonasova A, Cermak J, Dyr JE and Merkerova MD: MicroRNA profiles as predictive markers of response to azacitidine therapy in myelodysplastic syndromes and acute myeloid leukemia. Cancer Biomark. 22:101–110. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Kawai M, Sousa KM, MacDougald OA and Rosen CJ: The many facets of PPARgamma: Novel insights for the skeleton. Am J Physiol Endocrinol Metab. 299:E3–E9. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Kolli V, Stechschulte LA, Dowling AR, Rahman S, Czernik PJ and Lecka-Czernik B: Partial agonist, telmisartan, maintains PPARg serine 112 phosphorylation, and does not affect osteoblast differentiation and bone mass. PLoS One. 9:e963232014. View Article : Google Scholar : PubMed/NCBI

36 

Sun Z, Gong X, Zhu H, Wang C, Xu X, Cui D, Qian W and Han X: Inhibition of Wnt/β-catenin signaling promotes engraftment of mesenchymal stem cells to repair lung injury. J Cell Physiol. 229:213–224. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Wang ZM, Wan XH, Sang GY, Zhao JD, Zhu QY and Wang DM: miR-15a-5p suppresses endometrial cancer cell growth via Wnt/β-catenin signaling pathway by inhibiting WNT3A. Eur Rev Med Pharmacol Sci. 21:4810–4818. 2017.PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhang, W., Chi, C., Meng, X., & Liang, S. (2019). miRNA‑15a‑5p facilitates the bone marrow stem cell apoptosis of femoral head necrosis through the Wnt/β‑catenin/PPARγ signaling pathway. Molecular Medicine Reports, 19, 4779-4787. https://doi.org/10.3892/mmr.2019.10130
MLA
Zhang, W., Chi, C., Meng, X., Liang, S."miRNA‑15a‑5p facilitates the bone marrow stem cell apoptosis of femoral head necrosis through the Wnt/β‑catenin/PPARγ signaling pathway". Molecular Medicine Reports 19.6 (2019): 4779-4787.
Chicago
Zhang, W., Chi, C., Meng, X., Liang, S."miRNA‑15a‑5p facilitates the bone marrow stem cell apoptosis of femoral head necrosis through the Wnt/β‑catenin/PPARγ signaling pathway". Molecular Medicine Reports 19, no. 6 (2019): 4779-4787. https://doi.org/10.3892/mmr.2019.10130