Open Access

Dysregulated long non‑coding RNAs in pleomorphic adenoma tissues of pleomorphic adenoma gene 1 transgenic mice

  • Authors:
    • Wanlin Xu
    • Limin Liu
    • Hao Lu
    • Jinye Fu
    • Chenping Zhang
    • Wenjun Yang
    • Shukun Shen
  • View Affiliations

  • Published online on: April 11, 2019     https://doi.org/10.3892/mmr.2019.10149
  • Pages: 4735-4742
  • Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Long non‑coding RNAs (lncRNAs) have been proven to serve vital roles in various human diseases. However, their involvement in the development of pleomorphic adenoma (PA) in the salivary gland has yet to be examined. In the present study, microarray analysis of the lncRNA and mRNA expression profiles in pleomorphic adenoma gene 1 (PLAG1) transgenic mice was performed. Next, bioinformatics tools were used to predict the differentially expressed genes associated with PA, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and lncRNA‑mRNA co‑expression network analyses. Comparison of the transgenic and control mice demonstrated that a total of 9,110 lncRNAs and 7,750 mRNAs were significantly differentially expressed (fold change >2; P<0.05). Subsequently, six lncRNAs were randomly selected for further analysis, and five of these were validated as differentially expressed in PA by quantitative polymerase chain reaction, supporting the methodology employed in the current study. The GO and KEGG enrichment analysis of the differentially expressed mRNAs revealed that these mRNAs were closely associated with a number of processes involved in the development of PA. Furthermore, the lncRNA‑mRNA co‑expression network indicated that certain lncRNAs may serve vital roles in the pathogenesis of PA by interacting with a number of core genes. Taken together, these results indicated that lncRNAs and mRNAs were differentially expressed in PA tissues obtained from PLAG1 transgenic mice as compared with those from control mice. These differentially expressed lncRNAs may act as novel biomarkers and therapeutic targets for PA.

References

1 

Li LJ, Li Y, Wen YM, Liu H and Zhao HW: Clinical analysis of salivary gland tumor cases in West China in past 50 years. Oral Oncol. 44:187–192. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Lima SS, Soares AF, de Amorim RF and Freitas Rde A: Epidemiologic profile of salivary gland neoplasms: Analysis of 245 cases. Braz J Otorhinolaryngol. 71:335–340. 2005.(In Portuguese). View Article : Google Scholar : PubMed/NCBI

3 

Tian Z, Li L, Wang L, Hu Y and Li J: Salivary gland neoplasms in oral and maxillofacial regions: A 23-year retrospective study of 6982 cases in an eastern Chinese population. Int J Oral Maxillofac Surg. 39:235–242. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Hu YH, Zhang CY, Xia RH, Tian Z, Wang LZ and Li J: Prognostic factors of carcinoma ex pleomorphic adenoma of the salivary glands, with emphasis on the widely invasive carcinoma: A clinicopathologic analysis of 361 cases in a Chinese population. Oral surg Oral Med Oral Pathol Oral Radiol. 122:598–608. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Zatkova A, Rouillard JM, Hartmann W, Lamb BJ, Kuick R, Eckart M, von Schweinitz D, Koch A, Fonatsch C, Pietsch T, et al: Amplification and overexpression of the IGF2 regulator PLAG1 in hepatoblastoma. Genes Chromosomes Cancer. 39:126–137. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Astrom A, D'Amore ES, Sainati L, Panarello C, Morerio C, Mark J and Stenman G: Evidence of involvement of the PLAG1 gene in lipoblastomas. Int J Oncol. 16:1107–1110. 2000.PubMed/NCBI

7 

Abi Habib W, Brioude F, Edouard T, Bennett JT, Lienhardt-Roussie A, Tixier F, Salem J, Yuen T, Azzi S, Le Bouc Y, et al: Genetic disruption of the oncogenic HMGA2-PLAG1-IGF2 pathway causes fetal growth restriction. Genet Med. 20:250–258. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Juma AR, Grommen SVH, O'Bryan MK, O'Connor AE, Merriner DJ, Hall NE, Doyle SR, Damdimopoulou PE, Barriga D, Hart AH, et al: PLAG1 deficiency impairs spermatogenesis and sperm motility in mice. Sci Rep. 7:53172017. View Article : Google Scholar : PubMed/NCBI

9 

Matsuyama A, Hisaoka M, Nagao Y and Hashimoto H: Aberrant PLAG1 expression in pleomorphic adenomas of the salivary gland: A molecular genetic and immunohistochemical study. Virchows Arch. 458:583–592. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Debiec-Rychter M, Van Valckenborgh I, Van den Broeck C, Hagemeijer A, Van de Ven WJ, Kas K, Van Damme B and Voz ML: Histologic localization of PLAG1 (pleomorphic adenoma gene 1) in pleomorphic adenoma of the salivary gland: Cytogenetic evidence of common origin of phenotypically diverse cells. Lab Invest. 81:1289–1297. 2001. View Article : Google Scholar : PubMed/NCBI

11 

Avadhani V, Cohen C and Siddiqui MT: PLAG1: An immunohistochemical marker with limited utility in separating pleomorphic adenoma from other basaloid salivary gland tumors. Acta Cytol. 60:240–245. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Katabi N, Xu B, Jungbluth AA, Zhang L, Shao SY, Lane J, Ghossein R and Antonescu CR: PLAG1 immunohistochemistry is a sensitive marker for pleomorphic adenoma: A comparative study with PLAG1 genetic abnormalities. Histopathology. 72:285–293. 2018. View Article : Google Scholar : PubMed/NCBI

13 

de Brito BS, Giovanelli N, Egal ES, Sánchez-Romero C, Nascimento JS, Martins AS, Tincani ÁJ, Del Negro A, Gondak RO, Almeida OP, et al: Loss of expression of Plag1 in malignant transformation from pleomorphic adenoma to carcinoma ex pleomorphic adenoma. Hum Pathol. 57:152–159. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Zhao X, Ren W, Yang W, Wang Y, Kong H, Wang L, Yan L, Xu G, Fei J, Fu J, et al: Wnt pathway is involved in pleomorphic adenomas induced by overexpression of PLAG1 in transgenic mice. Int J Cancer. 118:643–648. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Shen S, Yang W, Wang Z, Lei X, Xu L, Wang Y, Wang L, Huang L, Yu Z, Zhang X, et al: Tumor-initiating cells are enriched in CD44(hi) population in murine salivary gland tumor. PLoS One. 6:e232822011. View Article : Google Scholar : PubMed/NCBI

16 

Wang Y, Shang W, Lei X, Shen S, Zhang H, Wang Z, Huang L, Yu Z, Ong H, Yin X, et al: Opposing functions of PLAG1 in pleomorphic adenoma: A microarray analysis of PLAG1 transgenic mice. Biotechnol Lett. 35:1377–1385. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Wang W, Wei C, Li P, Wang L, Li W, Chen K, Zhang J, Zhang W and Jiang G: Integrative analysis of mRNA and lncRNA profiles identified pathogenetic lncRNAs in esophageal squamous cell carcinoma. Gene. 661:169–175. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Li Y, Jin L, Dong A, Zhou X and Yuan H: Microarray expression profile analysis of long non-coding RNAs in optineurin E50K mutant transgenic mice. Mol Med Rep. 16:1255–1261. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Chen Z, Lin S, Li JL, Ni W, Guo R, Lu J, Kaye FJ and Wu L: CRTC1-MAML2 fusion-induced lncRNA LINC00473 expression maintains the growth and survival of human mucoepidermoid carcinoma cells. Oncogene. 37:1885–1895. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Shi H, Cao N, Pu Y, Xie L, Zheng L and Yu C: Long non-coding RNA expression profile in minor salivary gland of primary Sjögren's syndrome. Arthritis Res Ther. 18:1092016. View Article : Google Scholar : PubMed/NCBI

21 

Declercq J, Van Dyck F, Van Damme B and Van de Ven WJ: Upregulation of Igf and Wnt signalling associated genes in pleomorphic adenomas of the salivary glands in PLAG1 transgenic mice. Int J Oncol. 32:1041–1047. 2008.PubMed/NCBI

22 

Voz ML, Agten NS, Van de Ven WJ and Kas K: PLAG1, the main translocation target in pleomorphic adenoma of the salivary glands, is a positive regulator of IGF-II. Cancer Res. 60:106–113. 2000.PubMed/NCBI

23 

Ponting CP, Oliver PL and Reik W: Evolution and functions of long noncoding RNAs. Cell. 136:629–641. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Fortin J and Mak TW: Targeting PI3K signaling in cancer: A cautionary tale of two AKTs. Cancer Cell. 29:429–431. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Wang X, Zhang X, Wang G, Wang L, Lin Y and Sun F: Hsa-miR-513b-5p suppresses cell proliferation and promotes P53 expression by targeting IRF2 in testicular embryonal carcinoma cells. Gene. 626:344–353. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Akhtar M, Holmgren C, Göndör A, Vesterlund M, Kanduri C, Larsson C and Ekström TJ: Cell type and context-specific function of PLAG1 for IGF2 P3 promoter activity. Int J Oncol. 41:1959–1966. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Ulitsky I and Bartel DP: lincRNAs: Genomics, evolution, and mechanisms. Cell. 154:26–46. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Xu, W., Liu, L., Lu, H., Fu, J., Zhang, C., Yang, W., & Shen, S. (2019). Dysregulated long non‑coding RNAs in pleomorphic adenoma tissues of pleomorphic adenoma gene 1 transgenic mice. Molecular Medicine Reports, 19, 4735-4742. https://doi.org/10.3892/mmr.2019.10149
MLA
Xu, W., Liu, L., Lu, H., Fu, J., Zhang, C., Yang, W., Shen, S."Dysregulated long non‑coding RNAs in pleomorphic adenoma tissues of pleomorphic adenoma gene 1 transgenic mice". Molecular Medicine Reports 19.6 (2019): 4735-4742.
Chicago
Xu, W., Liu, L., Lu, H., Fu, J., Zhang, C., Yang, W., Shen, S."Dysregulated long non‑coding RNAs in pleomorphic adenoma tissues of pleomorphic adenoma gene 1 transgenic mice". Molecular Medicine Reports 19, no. 6 (2019): 4735-4742. https://doi.org/10.3892/mmr.2019.10149