Open Access

Comprehensive analysis of the aberrantly expressed lncRNA‑associated ceRNA network in breast cancer

  • Authors:
    • Tayier Tuersong
    • Linlin Li
    • Zumureti Abulaiti
    • Shumei Feng
  • View Affiliations

  • Published online on: April 15, 2019     https://doi.org/10.3892/mmr.2019.10165
  • Pages: 4697-4710
  • Copyright: © Tuersong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Previous studies have suggested that long non‑coding RNAs (lncRNAs) are closely associated with human diseases, particularly cancer, including cancer of the lung, breast and stomach. A variety of lncRNAs are abnormally expressed in cancer and participate in several pathways including cell proliferation and apoptosis; these elements are closely associated with the development of cancer. The Cancer Genome Atlas (TCGA) is an important cancer database. It consists of clinical data, genomic variation, mRNA, microRNA (miRNA) and lncRNAs expression, methylation and other data for various types of human cancer. In the present study, differential expression of RNA was identified using the edgeR package. A total 1,222 RNA sequencing profiles from patients with breast cancer were downloaded from TCGA. A competing endogenous RNA (ceRNA) network was constructed for breast cancer based on miRcode and miRTarBase. The top 10 lncRNAs were selected using Cox regression analysis. Survival analysis was performed using Kaplan‑Meier analysis. A total of 1,028 breast cancer‑associated lncRNAs and 89 miRNAs (fold change >2; P<0.05) were identified; among these, 93 lncRNAs and 19 miRNAs were included in the ceRNA network. Subsequently, 10 basic lncRNAs were selected and their associations with overall survival were identified. In addition, 5 lncRNAs (ADAM metallopeptidase with thrombospondin type 1 motif 9‑antisense RNA 1, AL513123.1, chromosome 10 open reading frame 126, long intergenic non‑protein coding RNA 536 and Wilms tumor 1 antisense RNA) were identified to be significantly associated with overall survival (P<0.05, log rank test). These results suggested that mRNAs, lncRNAs and miRNAs were involved in pathological mechanisms of breast cancer. The newly‑identified ceRNA network included 93 breast cancer‑specific lncRNAs, 19 miRNAs and 27 mRNAs. The results of the present study highlight the potential of lncRNAs in understanding the development and pathogenesis of breast cancer, and suggest novel concepts and an experimental basis for the identification of prognostic biomarkers and therapeutic targets for breast cancer.

References

1 

simpleBreastcancer.orgUS Breast Cancer Statistics. simplehttp://www.breastcancer.org/symptoms/understand_bc/statisticsbreast cancer org. February 18–2019

2 

Linos E, Spanos D, Rosner BA, Linos K, Hesketh T, Qu JD, Gao YT, Zheng W and Colditz GA: Effects of reproductive and demographic changes on breast cancer incidence in China: A modeling analysis. J Natl Cancer Inst. 100:1352–1360. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Higgins MJ and Baselga J: Targeted therapies for breast cancer. J Clin Invest. 121:3797–3803. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Győrffy B, Hatzis C, Sanft T, Hofstatter E, Aktas B and Pusztai L: Multigene prognostic tests in breast cancer: Past, present, future. Breast Cancer Res. 17:112015. View Article : Google Scholar : PubMed/NCBI

5 

Esteller M: Non-coding RNAs in human disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Ma L, Bajic VB and Zhang Z: On the classification of long non-coding RNAs. RNA Biol. 10:925–933. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Yuan SX, Yang F, Yang Y, Tao QF, Zhang J, Huang G, Yang Y, Wang RY, Yang S, Huo XS, et al: Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients' poor recurrence-free survival after hepatectomy. Hepatology. 56:2231–2241. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Hu X, Feng Y, Zhang D, Zhao SD, Hu Z, Greshock J, Zhang Y, Yang L, Zhong X, Wang LP, et al: A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer Cell. 26:344–357. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Feng S, Zhang J, Su W, Bai S, Xiao L, Chen X, Lin J, Reddy RM, Chang AC, Beer DG and Chen G: Overexpression of LINC00152 correlates with poor patient survival and knockdown impairs cell proliferation in lung cancer. Sci Rep. 7:29822017. View Article : Google Scholar : PubMed/NCBI

10 

Sang H, Liu H, Xiong P and Zhu M: Long non-coding RNA functions in lung cancer. Tumor Biol. 36:4027–4037. 2015. View Article : Google Scholar

11 

Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, Ren D, Ye X, Li C, Wang Y, et al: Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer. 17:792018. View Article : Google Scholar : PubMed/NCBI

12 

Wang Y, Lu T, Wang Q, Liu J and Jiao W: Circular RNAs: Crucial regulators in the human body (Review). Oncol Rep. 40:3119–3135. 2018.PubMed/NCBI

13 

Wang Y, Mo Y, Gong Z, Yang X, Yang M, Zhang S, Xiong F, Xiang B, Zhou M, Liao Q, et al: Circular RNAs in human cancer. Mol Cancer. 16:252017. View Article : Google Scholar : PubMed/NCBI

14 

Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi PP: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Guo LL, Song CH, Wang P, Dai LP, Zhang JY and Wang KJ: Competing endogenous RNA networks and gastric cancer. World J Gastroenterol. 21:11680–11687. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Wang Y, Hou J, He D, Sun M, Zhang P, Yu Y and Chen Y: The emerging function and mechanism of ceRNAs in cancer. Trends Genet. 32:211–224. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Qi X, Zhang DH, Wu N, Xiao JH, Wang X and Ma W: ceRNA in cancer: Possible functions and clinical implications. J Med Genet. 52:710–718. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Cheng DL, Xiang YY, Ji LJ and Lu XJ: Competing endogenous RNA interplay in cancer: Mechanism, methodology, and perspectives. Tumor Biol. 36:479–488. 2015. View Article : Google Scholar

19 

Cline MS, Craft B, Swatloski T, Goldman M, Ma S, Haussler D and Zhu J: Exploring TCGA pan-cancer data at the UCSC cancer genomics browser. Sci Rep. 3:26522013. View Article : Google Scholar : PubMed/NCBI

20 

R Core Team R, . A language and environment for statistical computing. R Foundation for Statistical Computing; Vienna, Austria: version 3.4.3. simplehttp://www.R-project.org/November 30–2017

21 

Jeggari A, Marks DS and Larsson E: miRcode: A map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics. 28:2062–2063. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, et al: miRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 46(D1): D296–D302. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Agarwal V, Bell GW, Nam JW and Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. Elife. 4:Aug 12–2015.(Epub ahead of print). doi: 10.7554/eLife.05005. View Article : Google Scholar

24 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Chen WJ, Tang RX, He RQ, Li DY, Liang L, Zeng JH, Hu XH, Ma J, Li SK and Chen G: Clinical roles of the aberrantly expressed lncRNAs in lung squamous cell carcinoma: A study based on RNA-sequencing and microarray data mining. Oncotarget. 8:61282–61304. 2017.PubMed/NCBI

26 

Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, Martincorena I, Alexandrov LB, Martin S, Wedge DC, et al: Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 534:47–54. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Xiao H, Tang K, Liu P, Chen K, Hu J, Zeng J, Xiao W, Yu G, Yao W, Zhou H, et al: lncRNA MALAT1 functions as a competing endogenous RNA to regulate ZEB2 expression by sponging miR-200s in clear cell kidney carcinoma. Oncotarget. 6:38005–38015. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Wang H, Niu L, Jiang S, Zhai J, Wang P, Kong F and Jin X: Comprehensive analysis of aberrantly expressed profiles of lncRNAs and miRNAs with associated ceRNA network in muscle-invasive bladder cancer. Oncotarget. 7:86174–86185. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Li F, Huang C, Li Q and Wu X: Construction and comprehensive analysis for dysregulated long non-coding RNA (lncRNA)-associated competing endogenous RNA (ceRNA) network in gastric cancer. Med Sci Monit. 24:37–49. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Zhou S, Wang L, Yang Q, Liu H, Meng Q, Jiang L, Wang S and Jiang W: Systematical analysis of lncRNA-mRNA competing endogenous RNA network in breast cancer subtypes. Breast Cancer Res Treat. 169:267–275. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, Karreth F, Poliseno L, Provero P, Di Cunto F, et al: Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell. 147:344–357. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Shen X, Xie B, Ma Z, Yu W, Wang W, Xu D, Yan X, Chen B, Yu L, Li J, et al: Identification of novel long non-coding RNAs in triple-negative breast cancer. Oncotarget. 6:21730–21739. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Yang F, Lv SX, Lv L, Liu YH, Dong SY, Yao ZH, Dai XX, Zhang XH and Wang OC: Identification of lncRNA FAM83H-AS1 as a novel prognostic marker in luminal subtype breast cancer. Onco Targets Ther. 9:7039–7045. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, Watson M, Davies S, Bernard PS, Parker JS, et al: Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 101:736–750. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Yuan N, Zhang G, Bie F, Ma M, Ma Y, Jiang X, Wang Y and Hao X: Integrative analysis of lncRNAs and miRNAs with coding RNAs associated with ceRNA crosstalk network in triple negative breast cancer. Onco Targets Ther. 10:5883–5897. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Wang H, Fu Z, Dai C, Cao J, Liu X, Xu J, Lv M, Gu Y, Zhang J, Hua X, et al: lncRNAs expression profiling in normal ovary, benign ovarian cyst and malignant epithelial ovarian cancer. Sci Rep. 6:389832016. View Article : Google Scholar : PubMed/NCBI

37 

Li Z, Yao Q, Zhao S, Wang Y, Li Y and Wang Z: Comprehensive analysis of differential co-expression patterns reveal transcriptional dysregulation mechanism and identify novel prognostic lncRNAs in esophageal squamous cell carcinoma. Onco Targets Ther. 10:3095–3105. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Crippa M, Bestetti I, Perotti M, Castronovo C, Tabano S, Picinelli C, Grassi G, Larizza L, Pincelli AI and Finelli P: New case of trichorinophalangeal syndrome-like phenotype with a de novo t(2;8)(p16.1;q23.3) translocation which does not disrupt the TRPS1 gene. BMC Med Genet. 15:522014. View Article : Google Scholar : PubMed/NCBI

39 

Wang N, Tan HY, Chan YT, Guo W, Li S and Feng Y: Identification of WT1 as determinant of heptatocellular carcinoma and its inhibition by Chinese herbal medicine Salvia chinensis benth and its active ingredient protocatechualdehyde. Oncotarget. 8:105848–105859. 2017.PubMed/NCBI

40 

Cai C, Huo Q, Wang X, Chen B and Yang Q: SNHG16 contributes to breast cancer cell migration by competitively binding miR-98 with E2F5. Biochem Biophys Res Commun. 485:272–278. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Kong Q and Qiu M: Long noncoding RNA SNHG15 promotes human breast cancer proliferation, migration and invasion by sponging miR-211-3p. Biochem Biophys Res Commun. 495:1594–1600. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Wang W, Luo P, Guo W, Shi Y, Xu D, Zheng H and Jia L: lncRNA SNHG20 knockdown suppresses the osteosarcoma tumorigenesis through the mitochondrial apoptosis pathway by miR-139/RUNX2 axis. Biochem Biophys Res Commun. 503:1927–1933. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Zhang Z, Zhu Z, Watabe K, Zhang X, Bai C, Xu M, Wu F and Mo YY: Negative regulation of lncRNA GAS5 by miR-21. Cell Death Differ. 20:1558–1568. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Yuan X, Wang S, Liu M, Lu Z, Zhan Y, Wang W and Xu AM: Histological and pathological assessment of miR-204 and SOX4 levels in gastric cancer patients. Biomed Res Int. 2017:68946752017. View Article : Google Scholar : PubMed/NCBI

45 

Todorova K, Metodiev MV, Metodieva G, Mincheff M, Fernández N and Hayrabedyan S: Micro-RNA-204 participates in TMPRSS2/ERG regulation and androgen receptor reprogramming in prostate cancer. Horm Cancer. 8:28–48. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Abmutalib NS, Othman SN, Mohamad Yusof A, Abdullah Suhaimi SN, Muhammad R and Jamal R: Integrated microRNA, gene expression and transcription factors signature in papillary thyroid cancer with lymph node metastasis. Peer J. 4:e21192016. View Article : Google Scholar : PubMed/NCBI

47 

Geng Y, Deng L, Su D, Xiao J, Ge D, Bao Y and Jing H: Identification of crucial microRNAs and genes in hypoxia-induced human lung adenocarcinoma cells. Onco Targets Ther. 9:4605–4616. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Tuersong, T., Li, L., Abulaiti, Z., & Feng, S. (2019). Comprehensive analysis of the aberrantly expressed lncRNA‑associated ceRNA network in breast cancer. Molecular Medicine Reports, 19, 4697-4710. https://doi.org/10.3892/mmr.2019.10165
MLA
Tuersong, T., Li, L., Abulaiti, Z., Feng, S."Comprehensive analysis of the aberrantly expressed lncRNA‑associated ceRNA network in breast cancer". Molecular Medicine Reports 19.6 (2019): 4697-4710.
Chicago
Tuersong, T., Li, L., Abulaiti, Z., Feng, S."Comprehensive analysis of the aberrantly expressed lncRNA‑associated ceRNA network in breast cancer". Molecular Medicine Reports 19, no. 6 (2019): 4697-4710. https://doi.org/10.3892/mmr.2019.10165