Open Access

Comprehensive analysis of differentially expressed profiles and reconstruction of a competing endogenous RNA network in papillary renal cell carcinoma

  • Authors:
    • Qing Luo
    • Meng Cui
    • Qinfu Deng
    • Jinbo Liu
  • View Affiliations

  • Published online on: April 5, 2019     https://doi.org/10.3892/mmr.2019.10138
  • Pages: 4685-4696
  • Copyright: © Luo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Long noncoding RNAs (lncRNAs) function as competing endogenous RNAs (ceRNAs). ceRNA networks may serve important roles in various tumors, as demonstrated by an increasing number of studies; however, papillary renal cell carcinoma (PRCC)‑associated ceRNA networks mediated by lncRNAs remain unknown. Increased knowledge of ceRNA networks in PRCC may aid the identification of novel targets and biomarkers in the treatment of PRCC. In the present study, a comprehensive investigation of mRNA, lncRNA, and microRNA (miRNA) expression in PRCC was conducted using sequencing data from The Cancer Genome Atlas. Differential expression (DE) profiles of mRNAs, lncRNAs and miRNAs were evaluated, with 1,970 mRNAs, 1,201 lncRNAs and 96 miRNAs identified as genes with significantly different expression between PRCC and control paracancerous tissues. Based on the identified DEmRNAs, a protein‑protein interaction network was generated using the STRING database. Furthermore, a ceRNA network for PRCC was determined using a targeted assay combined with the DE of miRNAs, mRNAs and lncRNAs, enabling the identification of important lncRNA‑miRNA and miRNA‑mRNA pairs. Analysis of the ceRNA network led to the extraction of a subnetwork and the identification of lncRNA maternally expressed 3 (MEG3), lncRNA PWRN1, miRNA (miR)‑508, miR‑21 and miR519 as important genes. Reverse transcription‑quantitative polymerase chain reaction analysis was conducted to validate the results of the bioinformatics analyses; it was revealed that lncRNA MEG3 expression levels were downregulated in PRCC tumor tissues compared with adjacent non‑tumor tissues. In addition, survival analysis was conducted to investigate the association between identified genes and the prognosis of patients with PRCC, indicating the potential involvement of 13 mRNAs, 15 lncRNAs and six miRNAs. In conclusion, the present study may improve understanding of the regulatory mechanisms of ceRNA networks in PRCC and provide novel insight for future studies of prognostic biomarkers and potential therapeutic targets.

References

1 

Humphrey PA, Moch H, Cubilla AL, Ulbright TM and Reuter VE: The 2016 WHO classification of tumours of the urinary system and male genital organs-part B: Prostate and bladder tumours. Eur Urol. 70:106–119. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Delahunt B and Eble JN: Papillary renal cell carcinoma: A clinicopathologic and immunohistochemical study of 105 tumors. Mod Pathol. 10:537–544. 1997.PubMed/NCBI

3 

Chevarie-Davis M, Riazalhosseini Y, Arseneault M, Aprikian A, Kassouf W, Tanguay S, Latour M and Brimo F: The morphologic and immunohistochemical spectrum of papillary renal cell carcinoma: Study including 132 cases with pure type 1 and type 2 morphology as well as tumors with overlapping features. Am J Surg Pathol. 38:887–894. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Ha YS, Chung JW, Choi SH, Lee JN, Kim HT, Kim TH, Chung SK, Byun SS, Hwang EC, Kang SH, et al: Clinical significance of subclassification of papillary renal cell carcinoma: Comparison of clinicopathologic parameters and oncologic outcomes between papillary histologic subtypes 1 and 2 using the Korean renal cell carcinoma database. Clin Genitourin Cancer. 15:e181–e186. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Tsimafeyeu I, Khasanova A, Stepanova E, Gordiev M, Khochenkov D, Naumova A, Varlamov I, Snegovoy A and Demidov L: FGFR2 overexpression predicts survival outcome in patients with metastatic papillary renal cell carcinoma. Clin Transl Oncol. 19:265–268. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Motzer RJ, Bacik J, Mariani T, Russo P, Mazumdar M and Reuter V: Treatment outcome and survival associated with metastatic renal cell carcinoma of non-clear-cell histology. J Clin Oncol. 20:2376–2381. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Durinck S, Stawiski EW, Pavía-Jiménez A, Modrusan Z, Kapur P, Jaiswal BS, Zhang N, Toffessi-Tcheuyap V, Nguyen TT, Pahuja KB, et al: Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. Nat Genet. 47:13–21. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Cancer Genome Atlas Research Network, ; Linehan WM, Spellman PT, Ricketts CJ, Creighton CJ, Fei SS, Davis C, Wheeler DA, Murray BA, Schmidt L, et al: Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med. 374:135–145. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Yang XJ, Tan MH, Kim HL, Ditlev JA, Betten MW, Png CE, Kort EJ, Futami K, Furge KA, Takahashi M, et al: A molecular classification of papillary renal cell carcinoma. Cancer Res. 65:5628–5637. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Lan H, Zeng J, Chen G and Huang H: Survival prediction of kidney renal papillary cell carcinoma by comprehensive LncRNA characterization. Oncotarget. 8:110811–110829. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi PP: A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ and Pandolfi PP: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 465:1033–1038. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Hou P, Zhao Y, Li Z, Yao R, Ma M, Gao Y, Zhao L, Zhang Y, Huang B and Lu J: LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death Dis. 5:e12872014. View Article : Google Scholar : PubMed/NCBI

14 

Chen P, Fang X, Xia B, Zhao Y, Li Q and Wu X: Long noncoding RNA LINC00152 promotes cell proliferation through competitively binding endogenous miR-125b with MCL-1 by regulating mitochondrial apoptosis pathways in ovarian cancer. Cancer Med. 7:4530–4541. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Liu K, Yao H, Wen Y, Zhao H, Zhou N, Lei S and Xiong L: Functional role of a long non-coding RNA LIFR-AS1/miR-29a/TNFAIP3 axis in colorectal cancer resistance to pohotodynamic therapy. Biochim Biophys Acta Mol Basis Dis. 1864:2871–2880. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Qu Y, Xiao H, Xiao W, Xiong Z, Hu W, Gao Y, Ru Z, Wang C, Bao L, Wang K, et al: Upregulation of MIAT regulates LOXL2 expression by competitively binding MiR-29c in clear cell renal cell carcinoma. Cell Physiol Biochem. 48:1075–1087. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Bai N, Peng E, Qiu X, Lyu N, Zhang Z, Tao Y, Li X and Wang Z: circFBLIM1 act as a ceRNA to promote hepatocellular cancer progression by sponging miR-346. J Exp Clin Cancer Res. 37:1722018. View Article : Google Scholar : PubMed/NCBI

18 

Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, et al: The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 22:1775–1789. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C, Wright J, Armstrong J, et al: GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47:D766–D773. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Robinson MD, McCarthy DJ and Smyth GK: edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26:139–140. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Benjamini Y and Hochberg Y: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Statisti Soc Series B: Methodol. 57:289–300. 1995.

22 

Gene Ontology Consortium: The gene ontology (GO) project in 2006. Nucleic Acids Res 34 (Database Issue). D322–D326. 2006. View Article : Google Scholar

23 

Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Huang da W, Sherman BT and Lempicki RA: Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Kanehisa M, Sato Y, Furumichi M, Morishima K and Tanabe M: New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47(D1): D590–D595. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Kanehisa M, Furumichi M, Tanabe M, Sato Y and Morishima K: KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1). D353–D361. 2017. View Article : Google Scholar

27 

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T and Yamanishi Y: KEGG for linking genomes to life and the environment. Nucleic Acids Res 36 (Database Issue). D480–D484. 2008.

28 

Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY and Wei L: KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39:W316–W322. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, et al: The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45(D1): D362–D368. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, et al: STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37 (Database Issue). D412–D416. 2009. View Article : Google Scholar

31 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Chin CH, Chen SH, Wu HH, Ho CW, Ko MT and Lin CY: cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 8 (Suppl 4):S112014. View Article : Google Scholar : PubMed/NCBI

33 

Jeggari A, Marks DS and Larsson E: miRcode: A map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics. 28:2062–2063. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH, Chu CF, Huang HY, Lin CM, Ho SY, et al: miRTarBase update 2014: An information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 42 (Database Issue). D78–D85. 2014. View Article : Google Scholar

35 

John B, Enright AJ, Aravin A, Tuschl T, Sander C and Marks DS: Human MicroRNA targets. PLoS Biol. 2:e3632004. View Article : Google Scholar : PubMed/NCBI

36 

Agarwal V, Bell GW, Nam JW and Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. Elife. 42015.(doi: 10.7554/eLife.05005).

37 

Bader GD and Hogue CW: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 4:22003. View Article : Google Scholar : PubMed/NCBI

38 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

39 

Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T and Snyder SH: Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol. 5:1051–1061. 2003. View Article : Google Scholar : PubMed/NCBI

40 

Pinton P, Giorgi C, Siviero R, Zecchini E and Rizzuto R: Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 27:6407–6418. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Kim KY, Cho HJ, Yu SN, Kim SH, Yu HS, Park YM, Mirkheshti N, Kim SY, Song CS, Chatterjee B and Ahn SC: Interplay of reactive oxygen species, intracellular Ca2+ and mitochondrial homeostasis in the apoptosis of prostate cancer cells by deoxypodophyllotoxin. J Cell Biochem. 114:1124–1134. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Xue J, Li R, Zhao X, Ma C, Lv X, Liu L and Liu P: Morusin induces paraptosis-like cell death through mitochondrial calcium overload and dysfunction in epithelial ovarian cancer. Chem Biol Interact. 283:59–74. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Raynal NJ, Lee JT, Wang Y, Beaudry A, Madireddi P, Garriga J, Malouf GG, Dumont S, Dettman EJ, Gharibyan V, et al: Targeting calcium signaling induces epigenetic reactivation of tumor suppressor genes in cancer. Cancer Res. 76:1494–1505. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Massari F, Ciccarese C, Santoni M, Brunelli M, Piva F, Modena A, Bimbatti D, Fantinel E, Santini D, Cheng L, et al: Metabolic alterations in renal cell carcinoma. Cancer Treat Rev. 41:767–776. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Wettersten HI, Aboud OA, Lara PN Jr and Weiss RH: Metabolic reprogramming in clear cell renal cell carcinoma. Nat Rev Nephrol. 13:410–419. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Lucarelli G, Galleggiante V, Rutigliano M, Sanguedolce F, Cagiano S, Bufo P, Lastilla G, Maiorano E, Ribatti D, Giglio A, et al: Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma. Oncotarget. 6:13371–13386. 2015. View Article : Google Scholar : PubMed/NCBI

47 

White NM, Newsted DW, Masui O, Romaschin AD, Siu KW and Yousef GM: Identification and validation of dysregulated metabolic pathways in metastatic renal cell carcinoma. Tumour Biol. 35:1833–1846. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Renganathan A and Felley-Bosco E: Long noncoding RNAs in cancer and therapeutic potential. Adv Exp Med Biol. 1008:199–222. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Bhan A, Soleimani M and Mandal SS: Long noncoding RNA and cancer: A new paradigm. Cancer Res. 77:3965–3981. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Huarte M: The emerging role of lncRNAs in cancer. Nat Med. 21:1253–1261. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Dan J, Wang J, Wang Y, Zhu M, Yang X, Peng Z, Jiang H and Chen L: LncRNA-MEG3 inhibits proliferation and metastasis by regulating miRNA-21 in gastric cancer. Biomed Pharmacother. 99:931–938. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Feng SQ, Zhang XY, Fan HT, Sun QJ and Zhang M: Up-regulation of LncRNA MEG3 inhibits cell migration and invasion and enhances cisplatin chemosensitivity in bladder cancer cells. Neoplasma. 65:925–932. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Li Z, Yang L, Liu X, Nie Z and Luo J: Long noncoding RNA MEG3 inhibits proliferation of chronic myeloid leukemia cells by sponging microRNA21. Biomed Pharmacother. 104:181–192. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Long J and Pi X: lncRNA-MEG3 suppresses the proliferation and invasion of melanoma by regulating CYLD expression mediated by sponging miR-499-5p. Biomed Res Int. 2018:20865642018. View Article : Google Scholar : PubMed/NCBI

55 

Sun KX, Wu DD, Chen S, Zhao Y and Zong ZH: LncRNA MEG3 inhibit endometrial carcinoma tumorigenesis and progression through PI3K pathway. Apoptosis. 22:1543–1552. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Zhang SZ, Cai L and Li B: MEG3 long non-coding RNA prevents cell growth and metastasis of osteosarcoma. Bratisl Lek Listy. 118:632–636. 2017.PubMed/NCBI

57 

Wei GH and Wang X: lncRNA MEG3 inhibit proliferation and metastasis of gastric cancer via p53 signaling pathway. Eur Rev Med Pharmacol Sci. 21:3850–3856. 2017.PubMed/NCBI

58 

Pang Y, Mao H, Shen L, Zhao Z, Liu R and Liu P: MiR-519d represses ovarian cancer cell proliferation and enhances cisplatin-mediated cytotoxicity in vitro by targeting XIAP. Onco Targets Ther. 7:587–597. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Ye X and Lv H: MicroRNA-519d-3p inhibits cell proliferation and migration by targeting TROAP in colorectal cancer. Biomed Pharmacother. 105:879–886. 2018. View Article : Google Scholar : PubMed/NCBI

60 

Yue H, Tang B, Zhao Y, Niu Y, Yin P, Yang W, Zhang Z and Yu P: MIR-519d suppresses the gastric cancer epithelial-mesenchymal transition via Twist1 and inhibits Wnt/β-catenin signaling pathway. Am J Transl Res. 9:3654–3664. 2017.PubMed/NCBI

61 

Chen Z, Ju H, Yu S, Zhao T, Jing X, Li P, Jia J, Li N, Tan B and Li Y: Prader-Willi region non-protein coding RNA 1 suppressed gastric cancer growth as a competing endogenous RNA of miR-425-5p. Clin Sci (Lond). 132:1003–1019. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Hong L, Wang Y, Chen W and Yang S: MicroRNA-508 suppresses epithelial-mesenchymal transition, migration, and invasion of ovarian cancer cells through the MAPK1/ERK signaling pathway. J Cell Biochem. 119:7431–7440. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Zhou B, Wang D, Sun G, Mei F, Cui Y and Xu H: Effect of miR-21 on apoptosis in lung cancer cell through inhibiting the PI3K/Akt/NF-κB signaling pathway in vitro and in vivo. Cell Physiol Biochem. 46:999–1008. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Zhao MY, Wang LM, Liu J, Huang X, Liu J and Zhang YF: MiR-21 suppresses anoikis through targeting PDCD4 and PTEN in human esophageal adenocarcinoma. Curr Med Sci. 38:245–251. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Naro Y, Ankenbruck N, Thomas M, Tivon Y, Connelly CM, Gardner L and Deiters A: Small molecule inhibition of MicroRNA miR-21 rescues chemosensitivity of renal-cell carcinoma to topotecan. J Med Chem. 11–Jul;2018.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

66 

Zhang R and Xia T: Long non-coding RNA XIST regulates PDCD4 expression by interacting with miR-21-5p and inhibits osteosarcoma cell growth and metastasis. Int J Oncol. 51:1460–1470. 2017. View Article : Google Scholar : PubMed/NCBI

67 

He H, Dai J, Zhuo R, Zhao J, Wang H, Sun F, Zhu Y and Xu D: Study on the mechanism behind lncRNA MEG3 affecting clear cell renal cell carcinoma by regulating miR-7/RASL11B signaling. J Cell Physiol. 233:9503–9515. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Wang L, Meng L, Wang XW, Ma GY and Chen JH: Expression of RRM1 and RRM2 as a novel prognostic marker in advanced non-small cell lung cancer receiving chemotherapy. Tumour Biol. 35:1899–1906. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Zhang C, Liu Z, Wang L, Qiao B, Du E, Li L, Xu Y and Zhang Z: Prognostic significance of GPC5 expression in patients with prostate cancer. Tumour Biol. 37:6413–6418. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Yuan S, Yu Z, Liu Q, Zhang M, Xiang Y, Wu N, Wu L, Hu Z, Xu B, Cai T, et al: GPC5, a novel epigenetically silenced tumor suppressor, inhibits tumor growth by suppressing Wnt/β-catenin signaling in lung adenocarcinoma. Oncogene. 35:6120–6131. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Han L, Kong R, Yin DD, Zhang EB, Xu TP, De W and Shu YQ: Low expression of long noncoding RNA GAS6-AS1 predicts a poor prognosis in patients with NSCLC. Med Oncol. 30:6942013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Luo, Q., Cui, M., Deng, Q., & Liu, J. (2019). Comprehensive analysis of differentially expressed profiles and reconstruction of a competing endogenous RNA network in papillary renal cell carcinoma. Molecular Medicine Reports, 19, 4685-4696. https://doi.org/10.3892/mmr.2019.10138
MLA
Luo, Q., Cui, M., Deng, Q., Liu, J."Comprehensive analysis of differentially expressed profiles and reconstruction of a competing endogenous RNA network in papillary renal cell carcinoma". Molecular Medicine Reports 19.6 (2019): 4685-4696.
Chicago
Luo, Q., Cui, M., Deng, Q., Liu, J."Comprehensive analysis of differentially expressed profiles and reconstruction of a competing endogenous RNA network in papillary renal cell carcinoma". Molecular Medicine Reports 19, no. 6 (2019): 4685-4696. https://doi.org/10.3892/mmr.2019.10138