Open Access

Low‑intensity pulsed ultrasound promotes apoptosis and inhibits angiogenesis via p38 signaling‑mediated endoplasmic reticulum stress in human endothelial cells

  • Authors:
    • Zhongping Su
    • Tianhua Xu
    • Yaqing Wang
    • Xiasheng Guo
    • Juan Tu
    • Dong Zhang
    • Xiangqing Kong
    • Yanhui Sheng
    • Wei Sun
  • View Affiliations

  • Published online on: April 5, 2019     https://doi.org/10.3892/mmr.2019.10136
  • Pages: 4645-4654
  • Copyright: © Su et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Aberrant increase in angiogenesis contributes to the progression of malignant solid tumors. An alternative anti‑angiogenesis therapy is critical for cancer, since the current anti‑angiogenesis drugs lack specificity for tumor cells. In the present study, the effects and mechanisms of low‑intensity pulsed ultrasound (LIPUS) on human umbilical vein endothelial cells (HUVECs) and human microvascular endothelial cells (HMECs) were investigated, and the therapeutic potential of this technology was assessed. HUVECs and HMECs were treated with LIPUS (0.5 MHz; 210 mW/cm2) for 1 min and cultured for 24 h. Flow cytometry and Cell Counting Kit‑8 assays demonstrated that LIPUS treatment at a dose of 210 mW/cm2 promoted apoptosis and decreased the viability in HUVECs and HMECs. Real‑time cell analysis also revealed that LIPUS did not affect the proliferation or migration of HUVECs. An endothelial cell tube formation assay indicated that LIPUS treatment inhibited the angiogenic ability of HUVECs and HMECs. Furthermore, LIPUS increased the protein levels of the apoptosis‑associated cleaved Caspase‑3 and decreased the B‑cell lymphoma‑2 levels. LIPUS increased the phosphorylation of p38 mitogen‑activated protein kinase (MAPK), and the levels of endoplasmic reticulum (ER) stress‑associated markers, including activating transcription factor‑4 (ATF‑4) and phosphorylated eukaryotic initiation factor 2α (eIF2α). The p38 inhibitor SB203580 reversed the pro‑apoptotic and anti‑angiogenic effects of LIPUS in cells. Finally, inhibition of p38 decreased the LIPUS‑induced elevation of p‑eIF2α and ATF‑4 levels. Taken together, these results suggested that LIPUS promoted apoptosis and inhibited angiogenesis in human endothelial cells via the activation of p38 MAPK‑mediated ER stress signaling.

References

1 

Stylianopoulos T: The solid mechanics of cancer and strategies for improved therapy. J Biomech Eng. 139:2017. View Article : Google Scholar : PubMed/NCBI

2 

Fukumura D and Jain RK: Tumor microenvironment abnormalities: Causes, consequences, and strategies to normalize. J Cell Biochem. 101:937–949. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D and Jain RK: Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 91:1071–1121. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Martin JD, Fukumura D, Duda DG, Boucher Y and Jain RK: Reengineering the tumor microenvironment to alleviate hypoxia and overcome cancer heterogeneity. Cold Spring Harb Perspect Med. 6:2016. View Article : Google Scholar

5 

Jain RK: Normalizing tumor microenvironment to treat cancer: Bench to bedside to biomarkers. J Clin Oncol. 31:2205–2218. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Vassilakopoulou M, Psyrri A and Argiris A: Targeting angiogenesis in head and neck cancer. Oral Oncol. 51:409–415. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Tas SW, Maracle CX, Balogh E and Szekanecz Z: Targeting of proangiogenic signalling pathways in chronic inflammation. Nat Rev Rheumatol. 12:111–122. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Simon T, Gagliano T and Giamas G: Direct effects of anti-angiogenic therapies on tumor cells: VEGF signaling. Trends Mol Med. 23:282–292. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Ye W: The complexity of translating anti-angiogenesis therapy from basic science to the clinic. Dev Cell. 37:114–125. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Al-Bataineh O, Jenne J and Huber P: Clinical and future applications of high intensity focused ultrasound in cancer. Cancer Treat Rev. 38:346–353. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Kennedy JE: High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer. 5:321–327. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Brown MR, Farquhar-Smith P, Williams JE, ter Haar G and deSouza NM: The use of high-intensity focused ultrasound as a novel treatment for painful conditions-a description and narrative review of the literature. Br J Anaesth. 115:520–530. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Pan H, Zhou W and Wang S: Pulsed focused ultrasound stimulates the release of tumor biomarkers into the blood circulation. Radiology. 285:1058–1060. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Hariharan P, Myers MR and Banerjee RK: HIFU procedures at moderate intensities-effect of large blood vessels. Phys Med Biol. 52:3493–3513. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Qiao Y, Yin H, Li Z and Wan M: Cavitation distribution within large phantom vessel and mechanical damage formed on surrounding vessel wall. Ultrason Sonochem. 20:1376–1383. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Mizrahi N, Zhou EH, Lenormand G, Krishnan R, Weihs D, Butler JP, Weitz DA, Fredberg JJ and Kimmel E: Low intensity ultrasound perturbs cytoskeleton dynamics. Soft matter. 8:2438–2443. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Rutten S, Nolte PA, Korstjens CM and Klein-Nulend J: Low-intensity pulsed ultrasound affects RUNX2 immunopositive osteogenic cells in delayed clinical fracture healing. Bone. 45:862–869. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Hitchcock KE and Holland CK: Ultrasound-assisted thrombolysis for stroke therapy: Better thrombus break-up with bubbles. Stroke. 41:S50–S53. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Zhang Z, Chen J, Chen L, Yang X, Zhong H, Qi X, Bi Y and Xu K: Low frequency and intensity ultrasound induces apoptosis of brain glioma in rats mediated by caspase-3, Bcl-2, and survivin. Brain Res. 1473:25–34. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Zhou XY, Wu SY, Zhang ZC, Wang F, Yang YL, Li M and Wei XZ: Low-intensity pulsed ultrasound promotes endothelial cell-mediated osteogenesis in a conditioned medium coculture system with osteoblasts. Medicine (Baltimore). 96:e83972017. View Article : Google Scholar : PubMed/NCBI

21 

Marquez RT and Xu L: Bcl-2: Beclin 1 complex: Multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res. 2:214–221. 2012.PubMed/NCBI

22 

Rovetta F, Stacchiotti A, Consiglio A, Cadei M, Grigolato PG, Lavazza A, Rezzani R and Aleo MF: ER signaling regulation drives the switch between autophagy and apoptosis in NRK-52E cells exposed to cisplatin. Exp Cell Res. 318:238–250. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Furusawa Y, Zhao QL, Hassan MA, Tabuchi Y, Takasaki I, Wada S and Kondo T: Ultrasound-induced apoptosis in the presence of Sonazoid and associated alterations in gene expression levels: A possible therapeutic application. Cancer Lett. 288:107–115. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Gao Q, Walmsley AD, Cooper PR and Scheven BA: Ultrasound stimulation of different dental stem cell populations: Role of mitogen-activated protein kinase signaling. J Endod. 42:425–431. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Lee GS, Park JH, Shin US and Kim HW: Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Acta Biomater. 7:3178–3186. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Mason TJ: Therapeutic ultrasound an overview. Ultrason Sonochem. 18:847–852. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Hou R, Xu Y, Lu Q, Zhang Y and Hu B: Effect of low-frequency low-intensity ultrasound with microbubbles on prostate cancer hypoxia. Tumour Biol. 39:10104283177192752017. View Article : Google Scholar : PubMed/NCBI

28 

Chen H, Brayman AA, Bailey MR and Matula TJ: Blood vessel rupture by cavitation. Urol Res. 38:321–326. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Elmore S: Apoptosis: A review of programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Chen Y and Brandizzi F: IRE1: ER stress sensor and cell fate executor. Trends Cell Biol. 23:547–555. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Bhutia SK, Dash R, Das SK, Azab B, Su ZZ, Lee SG, Grant S, Yacoub A, Dent P, Curiel DT, et al: Mechanism of autophagy to apoptosis switch triggered in prostate cancer cells by antitumor cytokine melanoma differentiation-associated gene 7/interleukin-24. Cancer Res. 70:3667–3676. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Wu H, Che X, Zheng Q, Wu A, Pan K, Shao A, Wu Q, Zhang J and Hong Y: Caspases: A molecular switch node in the crosstalk between autophagy and apoptosis. Int J Biol Sci. 10:1072–1083. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Obata T, Brown GE and Yaffe MB: MAP kinase pathways activated by stress: The p38 MAPK pathway. Crit Care Med. 28:N67–N77. 2000. View Article : Google Scholar : PubMed/NCBI

34 

Whitmarsh AJ: A central role for p38 MAPK in the early transcriptional response to stress. BMC Biol. 8:472010. View Article : Google Scholar : PubMed/NCBI

35 

Trempolec N, Dave-Coll N and Nebreda AR: SnapShot: p38 MAPK substrates. Cell. 152:924–924.e1. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Grossi V, Peserico A, Tezil T and Simone C: p38alpha MAPK pathway: A key factor in colorectal cancer therapy and chemoresistance. World J Gastroenterol. 20:9744–9758. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Olson JM and Hallahan AR: p38 MAP kinase: A convergence point in cancer therapy. Trends Mol Med. 10:125–129. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Pang H, Cai L, Yang Y, Chen X, Sui G and Zhao C: Knockdown of osteopontin chemosensitizes MDA-MB-231 cells to cyclophosphamide by enhancing apoptosis through activating p38 MAPK pathway. Cancer Biother Radiopharm. 26:165–173. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Sui X, Kong N, Ye L, Han W, Zhou J, Zhang Q, He C and Pan H: p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett. 344:174–179. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Matsui H, Fukuno N, Kanda Y, Kantoh Y, Chida T, Nagaura Y, Suzuki O, Nishitoh H, Takeda K, Ichijo H, et al: The expression of Fn14 via mechanical stress-activated JNK contributes to apoptosis induction in osteoblasts. J Biol Chem. 289:6438–6450. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Mu C, Lv T, Wang Z, Ma S, Ma J, Liu J, Yu J and Mu J: Mechanical stress stimulates the osteo/odontoblastic differentiation of human stem cells from apical papilla via erk 1/2 and JNK MAPK pathways. Biomed Res Int. 2014:4943782014. View Article : Google Scholar : PubMed/NCBI

42 

Xu T, Gu J, Li C, Guo X, Tu J, Zhang D, Sun W and Kong X: Low-intensity pulsed ultrasound suppresses proliferation and promotes apoptosis via p38 MAPK signaling in rat visceral preadipocytes. Am J Transl Res. 10:948–956. 2018.PubMed/NCBI

43 

Jiang Q, Li F, Shi K, Wu P, An J, Yang Y and Xu C: Involvement of p38 in signal switching from autophagy to apoptosis via the PERK/eIF2α/ATF-4 axis in selenite-treated NB4 cells. Cell Death Dis. 5:e12702014. View Article : Google Scholar : PubMed/NCBI

44 

Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA and Majsterek I: The role of the PERK/eIF2α/ATF-4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr Mol Med. 16:533–544. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Su, Z., Xu, T., Wang, Y., Guo, X., Tu, J., Zhang, D. ... Sun, W. (2019). Low‑intensity pulsed ultrasound promotes apoptosis and inhibits angiogenesis via p38 signaling‑mediated endoplasmic reticulum stress in human endothelial cells. Molecular Medicine Reports, 19, 4645-4654. https://doi.org/10.3892/mmr.2019.10136
MLA
Su, Z., Xu, T., Wang, Y., Guo, X., Tu, J., Zhang, D., Kong, X., Sheng, Y., Sun, W."Low‑intensity pulsed ultrasound promotes apoptosis and inhibits angiogenesis via p38 signaling‑mediated endoplasmic reticulum stress in human endothelial cells". Molecular Medicine Reports 19.6 (2019): 4645-4654.
Chicago
Su, Z., Xu, T., Wang, Y., Guo, X., Tu, J., Zhang, D., Kong, X., Sheng, Y., Sun, W."Low‑intensity pulsed ultrasound promotes apoptosis and inhibits angiogenesis via p38 signaling‑mediated endoplasmic reticulum stress in human endothelial cells". Molecular Medicine Reports 19, no. 6 (2019): 4645-4654. https://doi.org/10.3892/mmr.2019.10136