Open Access

Decreased expression of ubiquilin‑1 following neonatal hypoxia‑ischemic brain injury in mice

  • Authors:
    • Li Luo
    • Yilin Liu
    • Xing Tu
    • Xuxin Ren
    • Wenyan Zhao
    • Jing Liu
    • Li Zhang
    • Weiqiang Chen
    • Pei Zhang
    • Weicai Wang
    • Lanhai Lü
    • Mengxia Wang
  • View Affiliations

  • Published online on: April 15, 2019     https://doi.org/10.3892/mmr.2019.10168
  • Pages: 4597-4602
  • Copyright: © Luo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Ubiquilin‑1 (Ubqln), a ubiquitin‑like protein, regulates degradation of misfolded proteins and has been reported to have a crucial role in multiple pathologic and physiologic conditions. The current study was undertaken to investigate the expression of Ubqln in the brain of a neonatal hypoxia‑ischemic (HI) brain injury model induced using the Rice method with some modifications. Mouse pups at postnatal day 7 day were used in this study. Pups underwent permanent ligation of the left common carotid artery and a consecutive hypoxic challenge (8% O2 and 92% N2 for 120 min). The expression of Ubqln in the brain of pups following HI was analyzed by immunofluorescence staining and western blot analysis. Immunofluorescence staining demonstrated that Ubqln was extensively distributed in the cerebral cortex and hippocampus, and Ubqln was expressed in neurons, astrocytes and microglia in the brains of the HI brain injury model mice. Western blot analyses revealed decreased expression of Ubqln in the HI penumbra of the mouse model compared with Ubqln in the sham control group. The results of this study revealed that HI alters the expression of Ubqln, thus may provide a novel understanding of role of Ubqln in neonatal hypoxic ischemic encephalopathy.

References

1 

Lv H, Wang Q, Wu S, Yang L, Ren P, Yang Y, Gao J and Li L: Neonatal hypoxic ischemic encephalopathy-related biomarkers in serum and cerebrospinal fluid. Clin Chim Acta. 450:282–297. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Silveira RC and Procianoy RS: Hypothermia therapy for newborns with hypoxic ischemic encephalopathy. J Pediatr (Rio J) 91(6 Suppl 1). S78–S83. 2015. View Article : Google Scholar

3 

Douglas-Escobar M and Weiss MD: Hypoxic-ischemic encephalopathy: A review for the clinician. JAMA Pediatr. 169:397–403. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Vannucci RC, Connor JR, Mauger DT, Palmer C, Smith MB, Towfighi J and Vannucci SJ: Rat model of perinatal hypoxic-ischemic brain damage. J Neurosci Res. 55:158–163. 1999. View Article : Google Scholar : PubMed/NCBI

5 

Perlman JM: Intervention strategies for neonatal hypoxic-ischemic cerebral injury. Clin Ther. 28:1353–1365. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Li L, Klebe D, Doycheva D, McBride DW, Krafft PR, Flores J, Zhou C, Zhang JH and Tang J: G-CSF ameliorates neuronal apoptosis through GSK-3β inhibition in neonatal hypoxia-ischemia in rats. Exp Neurol. 263:141–149. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Jansen AH, Reits EA and Hol EM: The ubiquitin proteasome system in glia and its role in neurodegenerative diseases. Front Mol Neurosci. 7:732014. View Article : Google Scholar : PubMed/NCBI

8 

Massey LK, Mah AL and Monteiro MJ: Ubiquilin regulates presenilin endoproteolysis and modulates gamma-secretase components, Pen-2 and nicastrin. Biochem J. 391:513–525. 2005. View Article : Google Scholar : PubMed/NCBI

9 

Natunen T, Takalo M, Kemppainen S, Leskelä S, Marttinen M, Kurkinen KMA, Pursiheimo JP, Sarajärvi T, Viswanathan J, Gabbouj S, et al: Relationship between ubiquilin-1 and BACE1 in human Alzheimer's disease and APdE9 transgenic mouse brain and cell-based models. Neurobiol Dis. 85:187–205. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Zhang FF and Li J: Inhibitory effect of chloroquine derivatives on presenilin 1 and ubiquilin 1 expression in Alzheimer's disease. Int J Clin Exp Pathol. 8:7640–7643. 2015.PubMed/NCBI

11 

Rutherford NJ, Lewis J, Clippinger AK, Thomas MA, Adamson J, Cruz PE, Cannon A, Xu G, Golde TE, Shaw G, et al: Unbiased screen reveals ubiquilin-1 and −2 highly associated with huntingtin inclusions. Brain Res. 1524:62–73. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Institute of Laboratory Animal Resources (US), . Committee on Care, Use of Laboratory Animals, National Institutes of Health (US). Division of Research Resources. Guide for the care and use of laboratory animals. National Academies. 1985.

13 

Rice JE III, Vannucci RC and Brierley JB: The influence of immaturity on hypoxic ischemic brain damage in the rat. Ann Neurol. 9:131–141. 1981. View Article : Google Scholar : PubMed/NCBI

14 

Takalo M, Haapasalo A, Natunen T, Viswanathan J, Kurkinen KM, Tanzi RE, Soininen H and Hiltunen M: Targeting ubiquilin-1 in Alzheimer's disease. Expert Opin Ther Targets. 17:795–810. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Gadhave K, Bolshette N, Ahire A, Pardeshi R, Thakur K, Trandafir C, Istrate A, Ahmed S, Lahkar M, Muresanu DF and Balea M: The ubiquitin proteasomal system: A potential target for the management of Alzheimer's disease. J Cell Mol Med. 20:1392–1407. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Liu Y, Lü L, Hettinger CL, Dong G, Zhang D, Rezvani K, Wang X and Wang H: Ubiquilin-1 protects cells from oxidative stress and ischemic stroke caused tissue injury in mice. J Neurosci. 34:2813–2821. 2014. View Article : Google Scholar : PubMed/NCBI

17 

N'Diaye EN, Kajihara KK, Hsieh I, Morisaki H, Debnath J and Brown EJ: PLIC proteins or ubiquilins regulate autophagy-dependent cell survival during nutrient starvation. EMBO Rep. 10:173–179. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Yadav S, Singh N, Shah PP, Rowbotham DA, Malik D, Srivastav A, Shankar J, Lam WL, Lockwood WW and Beverly LJ: MIR155 regulation of ubiquilin1 and ubiquilin2: Implications in cellular protection and tumorigenesis. Neoplasia. 19:321–332. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Wang Y, Lu J, Zhao X, Feng Y, Lv S, Mu Y, Wang D, Fu H, Chen Y and Li Y: Prognostic significance of Ubiquilin1 expression in invasive breast cancer. Cancer Biomark. 15:635–643. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Bao J, Jiang X, Zhu X, Dai G, Dou R, Liu X, Sheng H, Liang Z and Yu H: Clinical significance of ubiquilin 1 in gastric cancer. Medicine (Baltimore). 97:e97012018. View Article : Google Scholar : PubMed/NCBI

21 

Shah PP, Lockwood WW, Saurabh K, Kurlawala Z, Shannon SP, Waigel S, Zacharias W and Beverly LJ: Ubiquilin1 represses migration and epithelial-to-mesenchymal transition of human non-small cell lung cancer cells. Oncogene. 34:1709–1717. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Viswanathan J, Haapasalo A, Kurkinen KM, Natunen T, Mäkinen P, Bertram L, Soininen H, Tanzi RE and Hiltunen M: Ubiquilin-1 modulates γ secretase mediated ε-site cleavage in neuronal cells. Biochemistry. 52:3899–3912. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Satoh J, Tabunoki H, Ishida T, Saito Y and Arima K: Ubiquilin-1 immunoreactivity is concentrated on Hirano bodies and dystrophic neurites in Alzheimer's disease brains. Neuropathol Appl Neurobiol. 39:817–830. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Liu Z, Ruan Y, Yue W, Zhu Z, Hartmann T, Beyreuther K and Zhang D: GM1 up-regulates Ubiquilin 1 expression in human neuroblastoma cells and rat cortical neurons. Neurosci Lett. 407:59–63. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Whiteley AM, Prado MA, Peng I, Abbas AR, Haley B, Paulo JA, Reichelt M, Katakam A, Sagolla M, Modrusan Z, et al: Ubiquilin1 promotes antigen-receptor mediated proliferation by eliminating mislocalized mitochondrial proteins. Elife. 6:e264352017. View Article : Google Scholar : PubMed/NCBI

26 

Liu Y, Qiao F and Wang H: Enhanced proteostasis in post-ischemic stroke mouse brains by ubiquilin-1 promotes functional recovery. Cell Mol Neurobiol. 37:1325–1329. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Nomura Y: Neuronal apoptosis and protection: Effects of nitric oxide and endoplasmic reticulum-related proteins. Biol Pharm Bull. 27:961–963. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Ko HS, Uehara T and Nomura Y: Role of ubiquilin associated with protein-disulfide isomerase in the endoplasmic reticulum in stress-induced apoptotic cell death. J Biol Chem. 277:35386–35392. 2002. View Article : Google Scholar : PubMed/NCBI

29 

Gill MB and Perez-Polo JR: Hypoxia ischemia-mediated cell death in neonatal rat brain. Neurochem Res. 33:2379–2389. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Ekert P, MacLusky N, Luo XP, Lehotay DC, Smith B, Post M and Tanswell AK: Dexamethasone prevents apoptosis in a neonatal rat model of hypoxic-ischemic encephalopathy (HIE) by a reactive oxygen species-independent mechanism. Brain Res. 747:9–17. 1997. View Article : Google Scholar : PubMed/NCBI

31 

Hernández-Jiménez M, Sacristán S, Morales C, García-Villanueva M, García-Fernández E, Alcázar A, González VM and Martín ME: Apoptosis-related proteins are potential markers of neonatal hypoxic-ischemic encephalopathy (HIE) injury. Neurosci lett. 558:143–148. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Kojima T, Ueda Y, Sato A, Sameshima H and Ikenoue T: Comprehensive gene expression analysis of cerebral cortices from mature rats after neonatal hypoxic-ischemic brain injury. J Mol Neurosci. 49:320–327. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Luo, L., Liu, Y., Tu, X., Ren, X., Zhao, W., Liu, J. ... Wang, M. (2019). Decreased expression of ubiquilin‑1 following neonatal hypoxia‑ischemic brain injury in mice. Molecular Medicine Reports, 19, 4597-4602. https://doi.org/10.3892/mmr.2019.10168
MLA
Luo, L., Liu, Y., Tu, X., Ren, X., Zhao, W., Liu, J., Zhang, L., Chen, W., Zhang, P., Wang, W., Lü, L., Wang, M."Decreased expression of ubiquilin‑1 following neonatal hypoxia‑ischemic brain injury in mice". Molecular Medicine Reports 19.6 (2019): 4597-4602.
Chicago
Luo, L., Liu, Y., Tu, X., Ren, X., Zhao, W., Liu, J., Zhang, L., Chen, W., Zhang, P., Wang, W., Lü, L., Wang, M."Decreased expression of ubiquilin‑1 following neonatal hypoxia‑ischemic brain injury in mice". Molecular Medicine Reports 19, no. 6 (2019): 4597-4602. https://doi.org/10.3892/mmr.2019.10168