Open Access

Quercetin suppresses glomerulosclerosis and TGF‑β signaling in a rat model

  • Authors:
    • Yifan Liu
    • Enlai Dai
    • Jing Yang
  • View Affiliations

  • Published online on: April 3, 2019     https://doi.org/10.3892/mmr.2019.10118
  • Pages: 4589-4596
  • Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The transforming growth factor‑β (TGF‑β) signaling pathway is an important regulatory pathway in renal fibrosis and is abnormally activated in glomerulosclerosis. Quercetin is a common Chinese herbal medicine and has been reported to inhibit TGF‑β signaling pathway activation. In the present study a glomerulosclerosis rat model was constructed and mice were treated with different concentrations of quercetin. Biochemical parameters, pathological indices and expression levels of TGF‑β signaling pathway‑associated proteins were detected using immunohistochemistry and western blotting. It was demonstrated that quercetin significantly improved physiological indices and altered the expression levels of TGF‑β signaling pathway‑associated proteins in rats with glomerulosclerosis. In conclusion, quercetin can regulate the TGF‑β signaling pathway and reduce the progression of glomerulosclerosis.

References

1 

Zou R, Xu G, Liu XC, Han M, Jiang JJ, Huang Q, He Y and Yao Y: PPARgamma agonists inhibit TGF-beta-PKA signaling in glomerulosclerosis. Acta Pharmacol Sin. 31:43–50. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Nagata M: Podocyte injury and its consequences. Kidney Int. 89:1221–1230. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Taneda S, Honda K, Ohno M, Uchida K, Nitta K and Oda H: Podocyte and endothelial injury in focal segmental glomerulosclerosis: An ultrastructural analysis. Virchows Arch. 467:449–458. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Wang C, Blough E, Arvapalli R, Dai X, Triest WE, Leidy JW, Masannat Y and Wu M: Acetaminophen attenuates glomerulosclerosis in obese Zucker rats via reactive oxygen species/p38MAPK signaling pathways. Free Radic Biol Med. 81:47–57. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Qian Y, Feldman E, Pennathur S, Kretzler M and Brosius FC III: From fibrosis to sclerosis: Mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes. 57:1439–1445. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Zhou TB and Qin YH: The signaling pathways of LMX1B and its role in glomerulosclerosis. J Recept Signal Transduct Res. 32:285–289. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Hodgin JB, Bitzer M, Wickman L, Afshinnia F, Wang SQ, O'Connor C, Yang Y, Meadowbrooke C, Chowdhury M, Kikuchi M, et al: Glomerular aging and focal global glomerulosclerosis: A podometric perspective. J Am Soc Nephrol. 26:3162–3178. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Arauz J, Rivera-Espinoza Y, Shibayama M, Favari L, Flores-Beltrán RE and Muriel P: Nicotinic acid prevents experimental liver fibrosis by attenuating the prooxidant process. Int Immunopharmacol. 28:244–251. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Liu L, Lin W, Zhang Q, Cao W and Liu Z: TGF-β induces miR-30d down-regulation and podocyte injury through Smad2/3 and HDAC3-associated transcriptional repression. J Mol Med (Berl). 94:291–300. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Nabavi SF, Russo GL, Daglia M and Nabavi SM: Role of quercetin as an alternative for obesity treatment: You are what you eat! Food Chem. 179:305–310. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Ma JQ, Li Z, Xie WR, Liu CM and Liu SS: Quercetin protects mouse liver against CCl4-induced inflammation by the TLR2/4 and MAPK/NF-κB pathway. Int Immunopharmacol. 28:531–539. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Pan HC, Jiang Q, Yu Y, Mei JP, Cui YK and Zhao WJ: Quercetin promotes cell apoptosis and inhibits the expression of MMP-9 and fibronectin via the AKT and ERK signalling pathways in human glioma cells. Neurochem Int. 80:60–71. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Baruah MM, Khandwekar AP and Sharma N: Quercetin modulates Wnt signaling components in prostate cancer cell line by inhibiting cell viability, migration, and metastases. Tumour Biol. 37:14025–14034. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Peng H, Liu Y, Wang J, Zhao X and Wang X: Effect of quercetin on the expression of TGF-beta1 in human embryonic lung fibroblasts activated by the silicotic alveolar macrophages. Wei Sheng Yan Jiu. 42:99–102. 2013.(In Chinese). PubMed/NCBI

15 

Steru L, Chermat R, Thierry B and Simon P: The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology (Berl). 85:367–370. 1985. View Article : Google Scholar : PubMed/NCBI

16 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

17 

Bertani T, Rocchi G, Sacchi G, Mecca G and Remuzzi G: Adriamycin-induced glomerulosclerosis in the rat. Am J Kidney Dis. 7:12–19. 1986. View Article : Google Scholar : PubMed/NCBI

18 

Zhou TB, Qin YH, Lei FY, Su LN, Zhao YJ and Huang WF: apoE expression in glomerulus and correlation with glomerulosclerosis induced by adriamycin in rats. Ren Fail. 33:348–354. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Liu S, Jia Z, Zhou L, Liu Y, Ling H, Zhou SF, Zhang A, Du Y, Guan G and Yang T: Nitro-oleic acid protects against adriamycin-induced nephropathy in mice. Am J Physiol Renal Physiol. 305:F1533–F1541. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Zhang YU, Zhou N, Wang H, Wang S and He J: Effect of Shenkang granules on the progression of chronic renal failure in 5/6 nephrectomized rats. Exp Ther Med. 9:2034–2042. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Zhou TB, Qin YH, Lei FY, Su LN, Zhao YJ and Huang WF: All-trans retinoic acid regulates the expression of apolipoprotein E in rats with glomerulosclerosis induced by Adriamycin. Exp Mol Pathol. 90:287–294. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Ding Y and Choi ME: Regulation of autophagy by TGF-β: Emerging role in kidney fibrosis. Semin Nephrol. 34:62–71. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Wan YG, Che XY, Sun W, Huang YR, Meng XJ, Chen HL, Shi XM, Tu Y, Wu W and Liu YL: Low-dose of multi-glycoside of Tripterygium wilfordii Hook. f., a natural regulator of TGF-β1/Smad signaling activity improves adriamycin-induced glomerulosclerosis in vivo. J Ethnopharmacol. 151:1079–1089. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Fukuda A, Minakawa A, Sato Y, Iwakiri T, Iwatsubo S, Komatsu H, Kikuchi M, Kitamura K, Wiggins RC and Fujimoto S: Urinary podocyte and TGF-β1 mRNA as markers for disease activity and progression in anti-glomerular basement membrane nephritis. Nephrol Dial Transplant. 32:1818–1830. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Yoon JJ, Lee YJ, Namgung S, Han BH, Choi ES, Kang DG and Lee HS: Samchuleum attenuates diabetic renal injury through the regulation of TGF-β/Smad signaling in human renal mesangial cells. Mol Med Rep. 17:3099–3108. 2018.PubMed/NCBI

26 

Kim YS, Xu ZG, Reddy MA, Li SL, Lanting L, Sharma K, Adler SG and Natarajan R: Novel interactions between TGF-{beta}1 actions and the 12/15-lipoxygenase pathway in mesangial cells. J Am Soc Nephrol. 16:352–362. 2005. View Article : Google Scholar : PubMed/NCBI

27 

McKnight AJ, Savage DA, Patterson CC, Sadlier D and Maxwell AP: Resequencing of genes for transforming growth factor beta1 (TGFB1) type 1 and 2 receptors (TGFBR1, TGFBR2), and association analysis of variants with diabetic nephropathy. BMC Med Genet. 8:52007. View Article : Google Scholar : PubMed/NCBI

28 

Das F, Ghosh-Choudhury N, Bera A, Dey N, Abboud HE, Kasinath BS and Choudhury GG: Transforming growth factor β integrates Smad 3 to mechanistic target of rapamycin complexes to arrest deptor abundance for glomerular mesangial cell hypertrophy. J Biol Chem. 288:7756–7768. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Zhang L, Liu C, Meng XM, Huang C, Xu F and Li J: Smad2 protects against TGF-β1/Smad3-mediated collagen synthesis in human hepatic stellate cells during hepatic fibrosis. Mol Cell Biochem. 400:17–28. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Yang H, Li G, Wu JJ, Wang L, Uhler M and Simeone DM: Protein kinase A modulates transforming growth factor-β signaling through a direct interaction with Smad4 protein. J Biol Chem. 288:8737–8749. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Schiffer M, Bitzer M, Roberts IS, Kopp JB, ten Dijke P, Mundel P and Böttinger EP: Apoptosis in podocytes induced by TGF-beta and Smad7. J Clin Invest. 108:807–816. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Larsson SO, Hedner U and Nilsson IM: On fibrinolytic split products in serum and urine in uraemia. Scand J Urol Nephrol. 5:234–242. 1971. View Article : Google Scholar : PubMed/NCBI

33 

Guasch G, Schober M, Pasolli HA, Conn EB, Polak L and Fuchs E: Loss of TGFbeta signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. Cancer Cell. 12:313–327. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Heldin CH, Vanlandewijck M and Moustakas A: Regulation of EMT by TGFβ in cancer. FEBS Lett. 586:1959–1970. 2012. View Article : Google Scholar : PubMed/NCBI

35 

David CJ, Huang YH, Chen M, Su J, Zou Y, Bardeesy N, Iacobuzio-Donahue CA and Massagué J: TGF-β tumor suppression through a lethal EMT. Cell. 164:1015–1030. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Sriram S, Gibson DJ, Robinson P, Pi L, Tuli S, Lewin AS and Schultz G: Assessment of anti-scarring therapies in ex vivo organ cultured rabbit corneas. Exp Eye Res. 125:173–182. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Tomcik M, Palumbo-Zerr K, Zerr P, Avouac J, Dees C, Sumova B, Distler A, Beyer C, Cerezo LA, Becvar R, et al: S100A4 amplifies TGF-β-induced fibroblast activation in systemic sclerosis. Ann Rheum Dis. 74:1748–1755. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Yan Q, Luo H, Wang B, Sui W, Zou G, Chen H and Zou H: Correlation between PKB/Akt, GSK-3β expression and tubular epithelial-mesenchymal transition in renal allografts with chronic active antibody-mediated rejection. Exp Ther Med. 13:2217–2224. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Toraldo G, Bhasin S, Bakhit M, Guo W, Serra C, Safer JD, Bhawan J and Jasuja R: Topical androgen antagonism promotes cutaneous wound healing without systemic androgen deprivation by blocking β-catenin nuclear translocation and cross-talk with TGF-β signaling in keratinocytes. Wound Repair Regen. 20:61–73. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Wagner MC, Rhodes G, Wang E, Pruthi V, Arif E, Saleem MA, Wean SE, Garg P, Verma R, Holzman LB, et al: Ischemic injury to kidney induces glomerular podocyte effacement and dissociation of slit diaphragm proteins Neph1 and ZO-1. J Biol Chem. 283:35579–35589. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Jia J, Ding G, Zhu J, Chen C, Liang W, Franki N and Singhal PC: Angiotensin II infusion induces nephrin expression changes and podocyte apoptosis. Am J Nephrol. 28:500–507. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Teixeira Vde P, Blattner SM, Li M, Anders HJ, Cohen CD, Edenhofer I, Calvaresi N, Merkle M, Rastaldi MP and Kretzler M: Functional consequences of integrin-linked kinase activation in podocyte damage. Kidney Int. 67:514–523. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Pérez-Pastén R, Martinez-Galero E and Chamorro-Cevallos G: Quercetin and naringenin reduce abnormal development of mouse embryos produced by hydroxyurea. J Pharm Pharmacol. 62:1003–1009. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Vanhees K, de Bock L, Godschalk RW, van Schooten FJ and van Waalwijk van Doorn-Khosrovani SB: Prenatal exposure to flavonoids: Implication for cancer risk. Toxicol Sci. 120:59–67. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Heinz SA, Henson DA, Austin MD, Jin F and Nieman DC: Quercetin supplementation and upper respiratory tract infection: A randomized community clinical trial. Pharmacol Res. 62:237–242. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Jin F, Nieman DC, Shanely RA, Knab AM, Austin MD and Sha W: The variable plasma quercetin response to 12-week quercetin supplementation in humans. Eur J Clin Nutr. 64:692–697. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Nieman DC, Henson DA, Davis JM, Dumke CL, Gross SJ, Jenkins DP, Murphy EA, Carmichael MD, Quindry JC, McAnulty SR, et al: Quercetin ingestion does not alter cytokine changes in athletes competing in the western states endurance run. J Interferon Cytokine Res. 27:1003–1011. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Scholten SD and Sergeev IN: Long-term quercetin supplementation reduces lipid peroxidation but does not improve performance in endurance runners. Open Access J Sports Med. 4:53–61. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Shanely RA, Knab AM, Nieman DC, Jin F, McAnulty SR and Landram MJ: Quercetin supplementation does not alter antioxidant status in humans. Free Radic Res. 44:224–231. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, Y., Dai, E., & Yang, J. (2019). Quercetin suppresses glomerulosclerosis and TGF‑β signaling in a rat model. Molecular Medicine Reports, 19, 4589-4596. https://doi.org/10.3892/mmr.2019.10118
MLA
Liu, Y., Dai, E., Yang, J."Quercetin suppresses glomerulosclerosis and TGF‑β signaling in a rat model". Molecular Medicine Reports 19.6 (2019): 4589-4596.
Chicago
Liu, Y., Dai, E., Yang, J."Quercetin suppresses glomerulosclerosis and TGF‑β signaling in a rat model". Molecular Medicine Reports 19, no. 6 (2019): 4589-4596. https://doi.org/10.3892/mmr.2019.10118