Open Access

Effects of granulocyte colony‑stimulating factor on rabbit carotid and porcine heart models of chronic obliterative arterial disease

  • Authors:
    • Zhaohui Hu
    • Zhisong Chen
    • Yiping Wang
    • Jinfa Jiang
    • Gary Tse
    • Wenjun Xu
    • Junbo Ge
    • Bing Sun
  • View Affiliations

  • Published online on: April 3, 2019     https://doi.org/10.3892/mmr.2019.10120
  • Pages: 4569-4578
  • Copyright : © Hu et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Previous studies suggest that granulocyte colony‑stimulating factor (G‑CSF) can promote bone marrow derived progenitor cells to mediate cardiovascular repair, potentially reversing mechanical dysfunction in chronic ischaemic heart disease and post myocardial infarction. Two models were used in the present study both using a surgical ameroid constrictor to induce arterial stenosis. The first model used the carotid artery of rabbits. They were divided into high fat diet (inducing atherosclerosis) or normal fat diet (control) groups. Each was subdivided into surgical exposure group without constrictor, ameroid constrictor receiving normal saline or receiving G‑CSF 15 µg/kg/day. Endothelial markers of endothelial nitric oxide synthase and endothelin 1 were increased by the use of ameroid constrictor in both atherosclerotic and non‑atherosclerotic mice, however were not further altered by G‑CSF. Scanning electron microscopy indicated that ameroid constrictor application altered endothelial morphology from an oval shape to a round shape and this was more prominent in the atherosclerotic compared with the non‑atherosclerotic group. G‑CSF injection increased the number of endothelial cells in all groups. The second model used the left coronary artery of pigs. They were equally divided into following groups, receiving normal saline (control), G‑CSF 2.5 µg/kg/day (low dose), 5 µg/kg/day (medium dose) and 10 µg/kg/day (high dose) for 5 days. G‑CSF at a low or high dose worsened intimal hyperplasia however at a medium dose improved it. In conclusion, G‑CSF had no effect in a rabbit carotid artery model of atherosclerosis. Its effects on the porcine heart were dose‑dependent; arterial disease worsened at a low or high dose, but improved at a medium dose.

References

1 

Traverse JH, McKenna DH, Harvey K, Jorgenso BC, Olson RE, Bostrom N, Kadidlo D, Lesser JR, Jagadeesan V, Garberich R and Henry TD: Results of a phase 1, randomized, double-blind, placebo-controlled trial of bone marrow mononuclear stem cell administration in patients following ST-elevation myocardial infarction. Am Heart J. 160:428–434. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Ince H, Petzsch M, Kleine HD, Eckard H, Rehders T, Burska D, Kische S, Freund M and Nienaber CA: Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: Final 1-year results of the front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by granulocyte colony-stimulating factor (FIRSTLINE-AMI) trial. Circulation 112 (9 Suppl). I73–I80. 2005.

3 

Ince H, Petzsch M, Kleine HD, Schmidt H, Rehders T, Körber T, Schümichen C, Freund M and Nienaber CA: Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte-colony-stimulating factor (FIRSTLINE-AMI). Circulation. 112:3097–3106. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Takano H, Hasegawa H, Kuwabara Y, Nakayama T, Matsuno K, Miyazaki Y, Yamamoto M, Fujimoto Y, Okada H, Okubo S, et al: Feasibility and safety of granulocyte colony-stimulating factor treatment in patients with acute myocardial infarction. Int J Cardiol. 122:41–47. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Valgimigli M, Rigolin GM, Cittanti C, Malagutti P, Curello S, Percoco G, Bugli AM, Della Porta M, Bragotti LZ, Ansani L, et al: Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: Clinical and angiographic safety profile. Eur Heart J. 26:1838–1845. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Zohlnhöfer D, Ott I, Mehilli J, Schömig K, Michalk F, Ibrahim T, Meisetschläger G, von Wedel J, Bollwein H, Seyfarth M, et al: Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: A randomized controlled trial. JAMA. 295:1003–1010. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Brunner S, Huber BC, Fischer R, Groebner M, Hacker M, David R, Zaruba MM, Vallaster M, Rischpler C, Wilke A, et al: G-CSF treatment after myocardial infarction: Impact on bone marrow-derived vs cardiac progenitor cells. Exp Hematol. 36:695–702. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Hasegawa H, Takano H, Iwanaga K, Ohtsuka M, Qin Y, Niitsuma Y, Ueda K, Toyoda T, Tadokoro H and Komuro I: Cardioprotective effects of granulocyte colony-stimulating factor in swine with chronic myocardial ischemia. J Am Coll Cardiol. 47:842–849. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Kagawa R, Moritake K, Shima T and Okada Y: Validity of B-mode ultrasonographic findings in patients undergoing carotid endarterectomy in comparison with angiographic and clinicopathologic features. Stroke. 27:700–705. 1996. View Article : Google Scholar : PubMed/NCBI

10 

Handa N, Matsumoto M, Maeda H, Hougaku H, Ogawa S, Fukunaga R, Yoneda S, Kimura K and Kamada T: Ultrasonic evaluation of early carotid atherosclerosis. Stroke. 21:1567–1572. 1990. View Article : Google Scholar : PubMed/NCBI

11 

Ripa RS, Jørgensen E, Wang Y, Thune JJ, Nilsson JC, Søndergaard L, Johnsen HE, Køber L, Grande P and Kastrup J: Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: Result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation. 113:1983–1992. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Powell TM, Paul JD, Hill JM, Thompson M, Benjamin M, Rodrigo M, McCoy JP, Read EJ, Khuu HM, Leitman SF, et al: Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 25:296–301. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Hill JM, Syed MA, Arai AE, Powell TM, Paul JD, Zalos G, Read EJ, Khuu HM, Leitman SF, Horne M, et al: Outcomes and risks of granulocyte colony-stimulating factor in patients with coronary artery disease. J Am Coll Cardiol. 46:1643–1648. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Kang HJ, Lee HY, Na SH, Chang SA, Park KW, Kim HK, Kim SY, Chang HJ, Lee W, Kang WJ, et al: Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: The MAGIC Cell-3-DES randomized, controlled trial. Circulation 114 (1 Suppl). I145–I151. 2006.

15 

Tse G, Hothi SS, Grace AA and Huang CL: Ventricular arrhythmogenesis following slowed conduction in heptanol-treated, Langendorff-perfused mouse hearts. J Physiol Sci. 62:79–92. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Tse G, Tse V, Yeo JM and Sun B: Atrial anti-arrhythmic effects of heptanol in Langendorff-perfused mouse hearts. PLoS One. 11:e01488582016. View Article : Google Scholar : PubMed/NCBI

17 

Tse G, Yeo JM, Tse V and Sun B: Gap junction inhibition by heptanol increases ventricular arrhythmogenicity by decreasing conduction velocity without affecting repolarization properties or myocardial refractoriness in Langendorff-perfused mouse hearts. Mol Med Rep. 14:4069–4074. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Tse G, Wong ST, Tse V and Yeo JM: Restitution analysis of alternans using dynamic pacing and its comparison with S1S2 restitution in heptanol-treated, hypokalaemic Langendorff-perfused mouse hearts. Biomed Rep. 4:673–680. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Tse G, Tse V and Yeo JM: Ventricular anti-arrhythmic effects of heptanol in hypokalaemic, Langendorff-perfused mouse hearts. Biomed Rep. 4:313–324. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Tse G, Sun B, Wong ST, Tse V and Yeo JM: Anti-arrhythmic effects of hypercalcemia in hyperkalemic, Langendorff-perfused mouse hearts. Biomed Rep. 5:301–310. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Choy L, Yeo JM, Tse V, Chan SP and Tse G: Cardiac disease and arrhythmogenesis: Mechanistic insights from mouse models. Int J Cardiol Heart Vasc. 12:1–10. 2016.PubMed/NCBI

22 

Tse G, Wong ST, Tse V, Lee YT, Lin HY and Yeo JM: Cardiac dynamics: Alternans and arrhythmogenesis. J Arrhythm. 32:411–417. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Tse G, Lai ET, Yeo JM and Yan BP: Electrophysiological mechanisms of Bayés syndrome: Insights from clinical and mouse studies. Front Physiol. 7:1882016. View Article : Google Scholar : PubMed/NCBI

24 

Tse G, Lai ET, Lee AP, Yan BP and Wong SH: Electrophysiological mechanisms of gastrointestinal arrhythmogenesis: Lessons from the heart. Front Physiol. 7:2302016. View Article : Google Scholar : PubMed/NCBI

25 

Tse G, Fiona Chan YW, Keung W and Yan BP: Electrophysiological mechanisms of long and short QT syndromes: Insights from mouse models. Int J Cardiol Heart Vasc. 14:8–13. 2017.PubMed/NCBI

26 

Tse G, Lai TH, Yeo JM, Tse V and Wong SH: Mechanisms of electrical activation and conduction in the gastrointestinal system: Lessons from cardiac electrophysiology. Front Physiol. 7:1822016. View Article : Google Scholar : PubMed/NCBI

27 

Tse G, Lai ET, Tse V and Yeo JM: Molecular and electrophysiological mechanisms underlying cardiac arrhythmogenesis in diabetes mellitus. J Diabetes Res. 2016:28487592016. View Article : Google Scholar : PubMed/NCBI

28 

Tse G, Yan BP, Chan YW, Tian XY and Huang Y: Reactive oxygen species, endoplasmic reticulum stress and mitochondrial dysfunction: The link with cardiac arrhythmogenesis. Front Physiol. 7:3132016. View Article : Google Scholar : PubMed/NCBI

29 

Chen Z, Sun B, Tse G, Jiang J and Xu W: Reversibility of both sinus node dysfunction and reduced HCN4 mRNA expression level in an atrial tachycardia pacing model of tachycardia-bradycardia syndrome in rabbit hearts. Int J Clin Exp Pathol. 9:8526–8531. 2016.

30 

Tse G, Yeo JM, Chan YW, Lai ET and Yan BP: What is the arrhythmic substrate in viral myocarditis? Insights from clinical and animal studies. Front Physiol. 7:3082016. View Article : Google Scholar : PubMed/NCBI

31 

Tse G and Yeo JM: Conduction abnormalities and ventricular arrhythmogenesis: The roles of sodium channels and gap junctions. Int J Cardiol Heart Vasc. 9:75–82. 2015.PubMed/NCBI

32 

Tse G: Mechanisms of cardiac arrhythmias. J Arrhythm. 32:75–81. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Vassiliou V, Chin C, Perperoglou A, Tse G, Ali A, Raphael C, Jabbour A, Newby D, Pennell D, Dweck M and Prasad S: 93 ejection fraction by cardiovascular magnetic resonance predicts adverse outcomes post aortic valve replacement. Heart. 100 (Suppl 3):A53–A54. 2014. View Article : Google Scholar

34 

Tse G, Ali A, Prasad SK, Vassiliou V and Raphael CE: Atypical case of post-partum cardiomyopathy: An overlap syndrome with arrhythmogenic right ventricular cardiomyopathy? BJR Case Rep. 1:201501822015.PubMed/NCBI

35 

Tse G, Ali A, Alpendurada F, Prasad S, Raphael CE and Vassiliou V: Tuberculous constrictive pericarditis. Res Cardiovasc Med. 4:e296142015.PubMed/NCBI

36 

Tse G: Both transmural dispersion of repolarization and of refractoriness are poor predictors of arrhythmogenicity: A role for iCEB (QT/QRS)? J Geriatr Cardiol. 13:813–814. 2016.PubMed/NCBI

37 

Tse G, Wong ST, Tse V and Yeo JM: Monophasic action potential recordings: Which is the recording electrode? J Basic Clin Physiol Pharmacol. 27:457–462. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Tse G and Yan BP: Novel arrhythmic risk markers incorporating QRS dispersion: QRSd × (Tpeak-Tend)/QRS and QRSd × (Tpeak-Tend)/(QT × QRS). Ann Noninvasive Electrocardiol. 22:Nov;2016.(doi: 10.1111/anec.12397). PubMed/NCBI

39 

Tse G: Novel conduction-repolarization indices for the stratification of arrhythmic risk. J Geriatr Cardiol. 13:811–812. 2016.PubMed/NCBI

40 

Tse G: (Tpeak-Tend)/QRS and (Tpeak-Tend)/(QT × QRS): Novel markers for predicting arrhythmic risk in Brugada syndrome. Europace. 19:6962017. View Article : Google Scholar : PubMed/NCBI

41 

Tse G and Yan BP: Traditional and novel electrocardiographic markers for predicting arrhythmic risk and sudden cardiac death. Europace. 19:712–721. 2016. View Article : Google Scholar

42 

Tse G, Wong ST, Tse V and Yeo JM: Depolarization vs. repolarization: What is the mechanism of ventricular arrhythmogenesis underlying sodium channel haploinsufficiency in mouse hearts? Acta Physiol (Oxf). 218:234–235. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Tse G, Wong ST, Tse V and Yeo JM: Variability in local action potential durations, dispersion of repolarization and wavelength restitution in aged wild-type and Scn5a+/− mouse hearts modelling human Brugada syndrome. J Geriatr Cardiol. 13:930–931. 2016.PubMed/NCBI

44 

Tse G, Wong ST, Tse V and Yeo JM: Determination of action potential wavelength restitution in Scn5a+/− mouse hearts modelling human Brugada syndrome. J Physiol. 14:595–596. 2017.

45 

Murugan D, Lau YS, Lau WC, Mustafa MR and Huang Y: Angiotensin 1–7 protects against angiotensin II-induced endoplasmic reticulum stress and endothelial dysfunction via mas receptor. PLoS One. 10:e01454132015. View Article : Google Scholar : PubMed/NCBI

46 

Wei LH, Huang XR, Zhang Y, Li YQ, Chen HY, Heuchel R, Yan BP, Yu CM and Lan HY: Deficiency of Smad7 enhances cardiac remodeling induced by angiotensin II infusion in a mouse model of hypertension. PLoS One. 8:e701952013. View Article : Google Scholar : PubMed/NCBI

47 

Wong WT, Tian XY and Huang Y: Endothelial dysfunction in diabetes and hypertension: Cross talk in RAS, BMP4, and ROS-dependent COX-2-derived prostanoids. J Cardiovasc Pharmacol. 61:204–214. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Ma S, Tian XY, Zhang Y, Mu C, Shen H, Bismuth J, Pownall HJ, Huang Y and Wong WT: E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis. Sci Rep. 6:229102016. View Article : Google Scholar : PubMed/NCBI

49 

Lin Z, Pan X, Wu F, Ye D, Zhang Y, Wang Y, Jin L, Lian Q, Huang Y, Ding H, et al: Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding protein-2 and induction of adiponectin in mice. Circulation. 131:1861–1871. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Yuen CY, Wong SL, Lau CW, Tsang SY, Xu A, Zhu Z, Ng CF, Yao X, Kong SK, Lee HK and Huang Y: From skeleton to cytoskeleton: Osteocalcin transforms vascular fibroblasts to myofibroblasts via angiotensin II and toll-like receptor 4. Circ Res. 111:e55–e66. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Zhang H, Liu J, Qu D, Wang L, Luo JY, Lau CW, Liu P, Gao Z, Tipoe GL, Lee HK, et al: Inhibition of miR-200c restores endothelial function in diabetic mice through suppression of COX-2. Diabetes. 65:1196–1207. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Cheang WS, Tian XY, Wong WT, Lau CW, Lee SS, Chen ZY, Yao X, Wang N and Huang Y: Metformin protects endothelial function in diet-induced obese mice by inhibition of endoplasmic reticulum stress through 5′adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor δ pathway. Arterioscler Thromb Vasc Biol. 34:830–836. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Morrow JP, Katchman A, Son NH, Trent CM, Khan R, Shiomi T, Huang H, Amin V, Lader JM, Vasquez C, et al: Mice with cardiac overexpression of peroxisome proliferator-activated receptor γ have impaired repolarization and spontaneous fatal ventricular arrhythmias. Circulation. 124:2812–2821. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Xie L, Feng H, Li S, Meng G, Liu S, Tang X, Ma Y, Han Y, Xiao Y, Gu Y, et al: SIRT3 mediates the antioxidant effect of hydrogen sulfide in endothelial cells. Antioxid Redox Signal. 24:329–343. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Xu A and Huang Y: A tireless giant in vascular research. J Cardiovasc Pharmacol. 67:359–360. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Chen Y, Liu J, Zheng Y, Wang J, Wang Z, Gu S, Tan J, Jing Q and Yang H: Uncoupling protein 3 mediates H2O2 preconditioning-afforded cardioprotection through the inhibition of MPTP opening. Cardiovasc Res. 105:192–202. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Zhang Y, Liu J, Luo JY, Tian XY, Cheang WS, Xu J, Lau CW, Wang L, Wong WT, Wong CM, et al: Upregulation of angiotensin (1–7)-mediated signaling preserves endothelial function through reducing oxidative stress in diabetes. Antioxid Redox Signal. 23:880–892. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Li Y, Fukuda N, Yokoyama S, Kusumi Y, Hagikura K, Kawano T, Takayama T, Matsumoto T, Satomi A, Honye J, et al: Effects of G-CSF on cardiac remodeling and arterial hyperplasia in rats. Eur J Pharmacol. 549:98–106. 2006. View Article : Google Scholar : PubMed/NCBI

59 

Hansson GK: Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol. 21:1876–1890. 2001. View Article : Google Scholar : PubMed/NCBI

60 

Haghighat A, Weiss D, Whalin MK, Cowan DP and Taylor WR: Granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor exacerbate atherosclerosis in apolipoprotein E-deficient mice. Circulation. 115:2049–2054. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Hasegawa H, Takano H, Ohtsuka M, Ueda K, Niitsuma Y, Qin Y, Tadokoro H, Shiomi M and Komuro I: G-CSF prevents the progression of atherosclerosis and neointimal formation in rabbits. Biochem Biophys Res Commun. 344:370–376. 2006. View Article : Google Scholar : PubMed/NCBI

62 

Cho HJ, Kim TY, Cho HJ, Park KW, Zhang SY, Kim JH, Kim SH, Hahn JY, Kang HJ, Park YB and Kim HS: The effect of stem cell mobilization by granulocyte-colony stimulating factor on neointimal hyperplasia and endothelial healing after vascular injury with bare-metal versus paclitaxel-eluting stents. J Am Coll Cardiol. 48:366–374. 2006. View Article : Google Scholar : PubMed/NCBI

63 

Kong D, Melo LG, Gnecchi M, Zhang L, Mostoslavsky G, Liew CC, Pratt RE and Dzau VJ: Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation. 110:2039–2046. 2004. View Article : Google Scholar : PubMed/NCBI

64 

Sehara Y, Hayashi T, Deguchi K, Zhang H, Tsuchiya A, Yamashita T, Lukic V, Nagai M, Kamiya T and Abe K: G-CSF enhances stem cell proliferation in rat hippocampus after transient middle cerebral artery occlusion. Neurosci Lett. 418:248–252. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Sato T, Suzuki H, Kusuyama T, Omori Y, Soda T, Tsunoda F, Shoji M, Iso Y, Koba S, Geshi E, et al: G-CSF after myocardial infarction accelerates angiogenesis and reduces fibrosis in swine. Int J Cardiol. 127:166–173. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Ripa RS, Wang Y, Jørgensen E, Johnsen HE, Hesse B and Kastrup J: Intramyocardial injection of vascular endothelial growth factor-A165 plasmid followed by granulocyte-colony stimulating factor to induce angiogenesis in patients with severe chronic ischaemic heart disease. Eur Heart J. 27:1785–1792. 2006. View Article : Google Scholar : PubMed/NCBI

67 

Lim SY, Kim YS, Ahn Y, Jeong MH, Rok LS, Kim JH, Kim KH, Park HW, Kim W, Cho JG, et al: The effects of granulocyte-colony stimulating factor in bare stent and sirolimus-eluting stent in pigs following myocardial infarction. Int J Cardiol. 118:304–311. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Hu, Z., Chen, Z., Wang, Y., Jiang, J., Tse, G., Xu, W. ... Sun, B. (2019). Effects of granulocyte colony‑stimulating factor on rabbit carotid and porcine heart models of chronic obliterative arterial disease. Molecular Medicine Reports, 19, 4569-4578. https://doi.org/10.3892/mmr.2019.10120
MLA
Hu, Z., Chen, Z., Wang, Y., Jiang, J., Tse, G., Xu, W., Ge, J., Sun, B."Effects of granulocyte colony‑stimulating factor on rabbit carotid and porcine heart models of chronic obliterative arterial disease". Molecular Medicine Reports 19.6 (2019): 4569-4578.
Chicago
Hu, Z., Chen, Z., Wang, Y., Jiang, J., Tse, G., Xu, W., Ge, J., Sun, B."Effects of granulocyte colony‑stimulating factor on rabbit carotid and porcine heart models of chronic obliterative arterial disease". Molecular Medicine Reports 19, no. 6 (2019): 4569-4578. https://doi.org/10.3892/mmr.2019.10120