Open Access

The 15d‑PGJ2 hydrogel ameliorates atopic dermatitis through suppression of the immune response

  • Authors:
    • Marcelo H. Napimoga
    • Juliana T. Clemente‑Napimoga
    • Nina M. Machabanski
    • Maria Eduarda A. Juliani
    • Pedro Henrique B. C. Acras
    • Cristina G. Macedo
    • Henrique B. Abdalla
    • Antônio José de Pinho
    • Andresa B. Soares
    • Marcelo Sperandio
    • Daniele R. de Araújo
  • View Affiliations

  • Published online on: April 11, 2019     https://doi.org/10.3892/mmr.2019.10156
  • Pages: 4536-4544
  • Copyright: © Napimoga et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The present study examined the efficacy of the topical 15d‑PGJ2‑poloxamer 407 hydrogel in an atopic dermatitis (AD) animal model. The 15d‑PGJ2 hydrogel was prepared and characterized. The examined rats possessed AD‑Like cutaneous lesions, which were induced using 2,4‑dinitrochlorobenzene, the rats were then treated with a hydrogel vehicle, 15d‑PGJ2 hydrogel or tacrolimus for 14 days. The rats were sacrificed and blood samples were collected to quantify the IgE levels. Subsequently, skin biopsies were stained with toluidine blue to identify mast cells and immunohistochemistry was performed for ROR‑γt and TNF‑α. Histological analyses demonstrated that 15d‑PGJ2 hydrogel significantly decreased mast cell infiltration (P<0.05) when compared with the AD‑group. Tacrolimus at 0.1% exhibited decreased mast cell infiltration; however, this difference was not statistically significant from the AD‑group. Topical 15d‑PGJ2 hydrogel and Tacrolimus 0.1% significantly reduced the serum levels of IgE (P<0.05) compared with the AD‑group. Immunohistochemistry revealed a significant decrease in ROR‑γt and TNF‑α positive cell expression (P<0.05) in the 15d‑PGJ2 hydrogel group compared with the AD‑group. In summary, topical administration of 15d‑PGJ2 hydrogel had a beneficial effect on AD symptoms, suggesting that this formulation may be a useful strategy for the treatment of AD.

References

1 

Veiga SP: Epidemiology of atopic dermatitis: A review. Allergy Asthma Proc. 33:227–234. 2012. View Article : Google Scholar : PubMed/NCBI

2 

De Benedetto A, Kubo A and Beck LA: Skin barrier disruption: A requirement for allergen sensitization? J Invest Dermatol. 132:949–963. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Berke R, Singh A and Guralnick M: Atopic dermatitis: An overview. Am Fam Physician. 86:35–42. 2012.PubMed/NCBI

4 

Dhar S, Seth J and Parikh D: Systemic side-effects of topical corticosteroids. Indian J Dermatol. 59:460–464. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Margolis DJ, Abuabara K, Hoffstad OJ, Wan J, Raimondo D and Bilker WB: Association between malignancy and topical use of pimecrolimus. JAMA Dermatol. 151:594–599. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Broeders JA, Ahmed Ali U and Fischer G: Systematic review and meta-analysis of randomized clinical trials (RCTs) comparing topical calcineurin inhibitors with topical corticosteroids for atopic dermatitis: A 15-year experience. J Am Acad Dermatol. 75:410–419. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Kikawa Y, Narumiya S, Fukushima M, Wakatsuka H and Hayaishi O: 9-Deoxy-delta 9, delta 12–13,14-dihydroprostaglandin D2, a metabolite of prostaglandin D2 formed in human plasma. Proc Natl Acad Sci USA. 81:1317–1321. 1984. View Article : Google Scholar : PubMed/NCBI

8 

Straus DS and Glass CK: Cyclopentenone prostaglandins: New insights on biological activities and cellular targets. Med Res Rev. 21:185–210. 2001. View Article : Google Scholar : PubMed/NCBI

9 

Napimoga MH, da Silva CA, Carregaro V, Farnesi-de-Assunção TS, Duarte PM, de Melo NF and Fraceto LF: Exogenous administration of 15d-PGJ2-loaded nanocapsules inhibits bone resorption in a mouse periodontitis model. J Immunol. 189:1043–1052. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Macedo CG, Napimoga MH, Rocha-Neto LM, Abdalla HB and Clemente-Napimoga JT: The role of endogenous opioid peptides in the antinociceptive effect of 15-deoxyΔ12,14-prostaglandinJ2 in the temporomandibular joint. Prostaglandins Leukot Essent Fatty Acids. 110:27–34. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Shibata T, Takahashi K, Matsubara Y, Inuzuka E, Nakashima F, Takahashi N, Kozai D, Mori Y and Uchida K: Identification of a prostaglandin D2 metabolite as a neuritogenesis enhancer targeting the TRPV1 ion channel. Sci Rep. 16:212612016. View Article : Google Scholar

12 

Kim SR, Choi HS, Seo HS, Ku JM, Hong SH, Yoo HH, Shin YC and Ko SG: Oral administration of herbal mixture extract inhibits 2,4-dinitrochlorobenzene-induced atopic dermatitis in BALB/c mice. Mediators Inflamm. 2014:3194382014. View Article : Google Scholar : PubMed/NCBI

13 

Surh YJ, Na HK, Park JM, Lee HN, Kim W, Yoon IS and Kim DD: 15-Deoxy-Δ12,14-prostaglandin JZ, an electrophilic lipid mediator of anti-inflammatory and pro-resolving signaling. Biochem Pharmacol. 82:1335–1351. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Silva Quinteiro M, Henrique Napimoga M, Gomes Macedo C, Furtado Freitas F, Balassini Abdalla H, Bonfante R and Trindade Clemente-Napimoga J: 15-deoxy-Δ12,14-prostaglandin J2 reduces albumin-induced arthritis in temporomandibular joint of rats. Eur J Pharmacol. 740:58–65. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Napimoga MH, Vieira SM, Dal-Secco D, Freitas A, Souto FO, Mestriner FL, Alves-Filho JC, Grespan R, Kawai T, Ferreira SH and Cunha FQ: Peroxisome proliferator-activated receptor-gamma ligand, 15-deoxy-Delta12,14-prostaglandin J2, reduces neutrophil migration via a nitric oxide pathway. J Immunol. 180:609–617. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Clemente-Napimoga JT, Moreira JA, Grillo R, de Melo NF, Fraceto LF and Napimoga MH: 15d-PGJ2-loaded in nanocapsules enhance the antinociceptive properties into rat temporomandibular hypernociception. Life Sci. 90:944–949. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Alves C, de Melo N, Fraceto L, de Araújo D and Napimoga M: Effects of 15d-PGJZ-loaded poly(D,L-lactide-co-glycolide) nanocapsules on inflammation. Br J Pharmacol. 162:623–632. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Gaumet M, Vargas A, Gurny R and Delie F: Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 69:1–9. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Trong LC, Djabourov M and Ponton A: Mechanisms of micellization and rheology of PEO-PPO-PEO triblock copolymers with various architectures. J Colloid Interface Sci. 328:278–287. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Oshiro A, da Silva DC, de Mello JC, Moraes VW, Cavalcanti LP, Franco MK, Alkschbirs MI, Fraceto LF, Yokaichiya F, Rodrigues T and de Araujo DR: Pluronics f-127/l-81 binary hydrogels as drug-delivery systems: Influence of physicochemical aspects on release kinetics and cytotoxicity. Langmuir. 30:13689–13698. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Akkari ACS, Papini JZB, Garcia GK, Franco MKKD, Cavalcanti LP, Gasperini A, Alkschbirs MI, Yokaichyia F, de Paula E, Tófoli GR and de Araujo DR: Poloxamer 407/188 binary thermosensitive hydrogels as delivery systems for infiltrative local anesthesia: Physico-chemical characterization and pharmacological evaluation. Mater Sci Eng C Mater Biol Appl. 68:299–307. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Dumortier G, Grossiord JL, Agnely F and Chaumeil JC: A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 23:2709–2728. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Santos Akkari AC, Ramos Campos EV, Keppler AF, Fraceto LF, de Paula E, Tófoli GR and de Araujo DR: Budesonide-hydroxypropyl-β-cyclodextrin inclusion complex in binary poloxamer 407/403 system for ulcerative colitis treatment: A physico-chemical study from micelles to hydrogels. Colloids Surf B Biointerfaces. 138:138–147. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Mello JC, Moraes VW, Watashi CM, da Silva DC, Cavalcanti LP, Franco MK, Yokaichiya F, de Araujo DR and Rodrigues T: Enhancement of chlorpromazine antitumor activity by Pluronics F127/L81 nanostructured system against human multidrug resistant leukemia. Pharmacol Res. 111:102–112. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Nascimento MHM, Franco MKKD, Yokaichyia F, de Paula E, Lombello CB and de Araujo DR: Hyaluronic acid in Pluronic F-127/F-108 hydrogels for postoperative pain in arthroplasties: Influence on physico-chemical properties and structural requirements for sustained drug-release. Int J Biol Macromol. 111:1245–1254. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Valero M and Dreiss CA: Modulating Pluronics micellar rupture with cyclodextrins and drugs: Effect of pH and temperature. J Phys Conf Ser. 549:0120102014. View Article : Google Scholar

27 

Mills CM and Marks R: Side effects of topical glucocorticoids. Curr Probl Dermatol. 21:122–131. 1993. View Article : Google Scholar : PubMed/NCBI

28 

FDA Post market Drug Safety, . simplehttp://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm107845.htm

29 

Kohno S, Endo H, Hashimoto A, Hayashi I, Murakami Y, Kitasato H, Kojima F, Kawai S and Kondo H: Inhibition of skin sclerosis by 15deoxy delta12,14-prostaglandin J2 and retrovirally transfected prostaglandin D synthase in a mouse model of bleomycin-induced scleroderma. Biomed Pharmacother. 60:18–25. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Kon K, Ikejima K, Hirose M, Yoshikawa M, Enomoto N, Kitamura T, Takei Y and Sato N: Pioglitazone prevents early-phase hepatic fibrogenesis caused by carbon tetrachloride. Biochem Biophys Res Commun. 291:55–61. 2002. View Article : Google Scholar : PubMed/NCBI

31 

Ghosh AK, Bhattacharyya S, Lakos G, Chen SJ, Mori Y and Varga J: Disruption of transforming growth factor beta signaling and profibrotic responses in normal skin fibroblasts by peroxisome proliferator-activated receptor gamma. Arthritis Rheum. 50:1305–1318. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Mantel A, Newsome A, Thekkudan T, Frazier R and Katdare M: The role of aldo-keto reductase 1C3 (AKR1C3)-mediated prostaglandin D2 (PGD2) metabolism in keloids. Exp Dermatol. 25:38–43. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Arai I, Takano N, Hashimoto Y, Futaki N, Sugimoto M, Takahashi N, Inoue T and Nakaike S: Prostanoid DP1 receptor agonist inhibits the pruritic activity in NC/Nga mice with atopic dermatitis. Eur J Pharmacol. 505:229–235. 2004. View Article : Google Scholar : PubMed/NCBI

34 

Farnesi-de-Assunção TS, Alves CF, Carregaro V, de Oliveira JR, da Silva CA, Cheraim AB, Cunha FQ and Napimoga MH: PPAR-γ agonists, mainly 15d-PGJ(2), reduce eosinophil recruitment following allergen challenge. Cell Immunol. 273:23–29. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Fujimura Y, Tachibana H and Yamada K: Peroxisome proliferator-activated receptor ligands negatively regulate the expression of the high-affinity IgE receptor Fc epsilon RI in human basophilic KU812 cells. Biochem Biophys Res Commun. 297:193–201. 2002. View Article : Google Scholar : PubMed/NCBI

36 

Miyazaki Y, Tachibana H and Yamada K: Inhibitory effect of peroxisome proliferator-activated receptor-gamma ligands on the expression of IgE heavy chain germline transcripts in the human B cell line DND39. Biochem Biophys Res Commun. 295:547–552. 2002. View Article : Google Scholar : PubMed/NCBI

37 

Klotz L, Burgdorf S, Dani I, Saijo K, Flossdorf J, Hucke S, Alferink J, Nowak N, Beyer M, Mayer G, et al: The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J Exp Med. 206:2079–2089. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Vieira SM, Cunha TM, França RF, Pinto LG, Talbot J, Turato WM, Lemos HP, Lima JB, Verri WA Jr, Almeida SC, et al: Joint NOD2/RIPK2 signaling regulates IL-17 axis and contributes to the development of experimental arthritis. J Immunol. 188:5116–5122. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Toda M, Leung DY, Molet S, Boguniewicz M, Taha R, Christodoulopoulos P, Fukuda T, Elias JA and Hamid QA: Polarized in vivo expression of IL-11 and IL-17 between acute and chronic skin lesions. J Allergy Clin Immunol. 111:875–881. 2003. View Article : Google Scholar : PubMed/NCBI

40 

Koga C, Kabashima K, Shiraishi N, Kobayashi M and Tokura Y: Possible pathogenic role of Th17 cells for atopic dermatitis. J Invest Dermatol. 128:2625–2630. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Di Cesare A, Di Meglio P and Nestle FO: A role for Th17 cells in the immunopathogenesis of atopic dermatitis? J Invest Dermatol. 128:2569–2571. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A and Kalogeromitros D: Mast cells and inflammation. Biochim Biophys Acta. 1822:21–33. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Heo WI, Lee KE, Hong JY, Kim MN, Oh MS, Kim YS, Kim KW, Kim KE and Sohn MH: The role of interleukin-17 in mouse models of atopic dermatitis and contact dermatitis. Clin Exp Dermatol. 40:665–671. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Batista DI, Perez L, Orfali RL, Zaniboni MC, Samorano LP, Pereira NV, Sotto MN, Ishizaki AS, Oliveira LM, Sato MN and Aoki V: Profile of skin barrier proteins (filaggrin, claudins 1 and 4) and Th1/Th2/Th17 cytokines in adults with atopic dermatitis. J Eur Acad Dermatol Venereol. 29:1091–1095. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Coutinho DS, Anjos-Valotta EA, do Nascimento CVMF, Pires ALA, Napimoga MH, Carvalho VF, Torres RC, E Silva PMR and Martins MA: 15-Deoxy-delta-12,14-prostaglandin J2 inhibits lung inflammation and remodeling in distinct murine models of asthma. Front Immunol. 8:7402017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 19 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Napimoga, M.H., Clemente‑Napimoga, J.T., Machabanski, N.M., Juliani, M.E., Acras, P.H., Macedo, C.G. ... de Araújo, D.R. (2019). The 15d‑PGJ2 hydrogel ameliorates atopic dermatitis through suppression of the immune response. Molecular Medicine Reports, 19, 4536-4544. https://doi.org/10.3892/mmr.2019.10156
MLA
Napimoga, M. H., Clemente‑Napimoga, J. T., Machabanski, N. M., Juliani, M. E., Acras, P. H., Macedo, C. G., Abdalla, H. B., de Pinho , A. J., Soares, A. B., Sperandio, M., de Araújo, D. R."The 15d‑PGJ2 hydrogel ameliorates atopic dermatitis through suppression of the immune response". Molecular Medicine Reports 19.6 (2019): 4536-4544.
Chicago
Napimoga, M. H., Clemente‑Napimoga, J. T., Machabanski, N. M., Juliani, M. E., Acras, P. H., Macedo, C. G., Abdalla, H. B., de Pinho , A. J., Soares, A. B., Sperandio, M., de Araújo, D. R."The 15d‑PGJ2 hydrogel ameliorates atopic dermatitis through suppression of the immune response". Molecular Medicine Reports 19, no. 6 (2019): 4536-4544. https://doi.org/10.3892/mmr.2019.10156