1
|
Campbell IL, Krucker T, Steffensen S, Akwa
Y, Powell HC, Lane T, Carr DJ, Gold LH, Henriksen SJ and Siggins
GR: Structural and functional neuropathology in transgenic mice
with CNS expression of IFN-α. Brain Res. 835:46–61. 1999.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Hof PR and Mobbs CV: Handbook of the
neuroscience of aging. Elsevier/Academic Press; Amsterdam: pp.
1–53. 2010
|
3
|
Yuan J and Yankner BA: Apoptosis in the
nervous system. Nature. 407:802–809. 2000. View Article : Google Scholar : PubMed/NCBI
|
4
|
Przedborski S, Vila M and Jackson-Lewis V:
Neurodegeneration: What is it and where are we? J Clin Invest.
111:3–10. 2003. View Article : Google Scholar : PubMed/NCBI
|
5
|
Amor S, Puentes F, Baker D and van der
Valk P: Inflammation in neurodegenerative diseases. Immunology.
129:154–169. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shinya K, Shimada A, Ito T, Otsuki K,
Morita T, Tanaka H, Takada A, Kida H and Umemura T: Avian influenza
virus intranasally inoculated infects the central nervous system of
mice through the general visceral afferent nerve. Arch Virol.
145:187–195. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Reinacher M, Bonin J, Narayan O and
Scholtissek C: Pathogenesis of neurovirulent influenza A virus
infection in mice. Route of entry of virus into brain determines
infection of different populations of cells. Lab Invest.
49:686–692. 1983.PubMed/NCBI
|
8
|
Jadidi-Niaragh F and Mirshafiey A:
Histamine and histamine receptors in pathogenesis and treatment of
multiple sclerosis. Neuropharmacology. 59:180–189. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chastain EM, Duncan DS, Rodgers JM and
Miller SD: The role of antigen presenting cells in multiple
sclerosis. Biochim Biophys Acta. 1812:265–274. 2011. View Article : Google Scholar
|
10
|
Czirr E and Wyss-Coray T: The immunology
of neurodegeneration. J Clin Invest. 122:1156–1163. 2012.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Ransohoff RM and Perry VH: Microglial
physiology: Unique stimuli, specialized responses. Annu Rev
Immunol. 27:119–145. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Perry VH and Teeling J: Microglia and
macrophages of the central nervous system: the contribution of
microglia priming and systemic inflammation to chronic
neurodegeneration. Sem Immunopathol. 35:601–612. 2013. View Article : Google Scholar
|
13
|
Schwartz M, Kipnis J, Rivest S and Prat A:
How do immune cells support and shape the brain in health, disease,
and aging? J Neurosci. 33:17587–17596. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Sofroniew MV and Vinters HV: Astrocytes:
Biology and pathology. Acta Neuropathol. 119:7–35. 2010. View Article : Google Scholar
|
15
|
Wyss-Coray T and Mucke L: Inflammation in
neurodegenerative disease - a double-edged sword. Neuron.
35:419–432. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lull ME and Block ML: Microglial
activation and chronic neurodegeneration. Neurotherapeutics.
7:354–365. 2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Das Sarma J: Microglia-mediated
neuroinflammation is an amplifier of virus-induced neuropathology.
J Neurovirol. 20:122–136. 2014. View Article : Google Scholar
|
18
|
Glass CK, Saijo K, Winner B, Marchetto MC
and Gage FH: Mechanisms underlying inflammation in
neurodegeneration. Cell. 140:918–934. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Teeling JL and Perry VH: Systemic
infection and inflammation in acute CNS injury and chronic
neurodegeneration: Underlying mechanisms. Neuroscience.
158:1062–1073. 2009. View Article : Google Scholar
|
20
|
Taylor JP, Hardy J and Fischbeck KH: Toxic
proteins in neurodegenerative disease. Science. 296:1991–1995.
2002. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chevalier-Larsen E and Holzbaur EL: Axonal
transport and neurodegenerative disease. Biochim Biophys Acta.
1762:1094–1108. 2006. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen H and Chan DC: Mitochondrial dynamics
- fusion, fission, movement, and mitophagy - in neurodegenerative
diseases. Hum Mol Genet. 18(R2): R169–R176. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Allison DJ and Ditor DS: The common
inflammatory etiology of depression and cognitive impairment: A
therapeutic target. J Neuroinflammation. 11:1512014. View Article : Google Scholar : PubMed/NCBI
|
24
|
de Leeuw FE, de Groot JC, Oudkerk M,
Witteman JC, Hofman A, van Gijn J and Breteler MM: Hypertension and
cerebral white matter lesions in a prospective cohort study. Brain.
125:765–772. 2002. View Article : Google Scholar : PubMed/NCBI
|
25
|
Schiffrin EL: Inflammation, immunity and
development of essential hypertension. J Hypertens. 32:228–229.
2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Shimizu M, Ishikawa J, Yano Y, Hoshide S,
Shimada K and Kario K: The relationship between the morning blood
pressure surge and low-grade inflammation on silent cerebral
infarct and clinical stroke events. Atherosclerosis. 219:316–321.
2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Tousoulis D, Kampoli AM, Papageorgiou N,
Androulakis E, Antoniades C, Toutouzas K and Stefanadis C:
Pathophysiology of atherosclerosis: The role of inflammation. Curr
Pharm Des. 17:4089–4110. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Di Napoli M, Godoy DA, Campi V, Masotti L,
Smith CJ, Parry Jones AR, Hopkins SJ, Slevin M, Papa F, Mogoanta L,
et al: C-reactive protein in intracerebral hemorrhage: Time course,
tissue localization, and prognosis. Neurology. 79:690–699. 2012.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Di Napoli M, Parry-Jones AR, Smith CJ,
Hopkins SJ, Slevin M, Masotti L, Campi V, Singh P, Papa F,
Popa-Wagner A, et al: C-reactive protein predicts hematoma growth
in intracerebral hemorrhage. Stroke. 45:59–65. 2014. View Article : Google Scholar
|
30
|
Rizzo M, Corrado E, Coppola G, Muratori I,
Mezzani A, Novo G and Novo S: The predictive role of C-reactive
protein in patients with hypertension and subclinical
atherosclerosis. Intern Med J. 39:539–545. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Rizzo M, Corrado E, Coppola G, Muratori I,
Novo G and Novo S: Markers of inflammation are strong predictors of
subclinical and clinical atherosclerosis in women with
hypertension. Coron Artery Dis. 20:15–20. 2009. View Article : Google Scholar
|
32
|
Goossens GH: The role of adipose tissue
dysfunction in the pathogenesis of obesity-related insulin
resistance. Physiol Behav. 94:206–218. 2008. View Article : Google Scholar
|
33
|
Goossens GH, Bizzarri A, Venteclef N,
Essers Y, Cleutjens JP, Konings E, Jocken JW, Čajlaković M,
Ribitsch V, Clément K, et al: Increased adipose tissue oxygen
tension in obese compared with lean men is accompanied by insulin
resistance, impaired adipose tissue capillarization, and
inflammation. Circulation. 124:67–76. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Howcroft TK, Campisi J, Louis GB, Smith
MT, Wise B, Wyss-Coray T, Augustine AD, McElhaney JE, Kohanski R
and Sierra F: The role of inflammation in age-related disease.
Aging (Albany NY). 5:84–93. 2013. View Article : Google Scholar
|
35
|
Olefsky JM and Glass CK: Macrophages,
inflammation, and insulin resistance. Annu Rev Physiol. 72:219–246.
2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bruunsgaard H, Pedersen M and Pedersen BK:
Aging and proinflammatory cytokines. Curr Opin Hematol. 8:131–136.
2001. View Article : Google Scholar : PubMed/NCBI
|
37
|
Fagiolo U, Cossarizza A, Santacaterina S,
Ortolani C, Monti D, Paganelli R and Franceschi C: Increased
cytokine production by peripheral blood mononuclear cells from
healthy elderly people. Ann N Y Acad Sci. 663:490–493. 1992.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Fagiolo U, Amadori A, Cozzi E, Bendo R,
Lama M, Douglas A and Palù G: Humoral and cellular immune response
to influenza virus vaccination in aged humans. Aging (Milano).
5:451–458. 1993.
|
39
|
Fagiolo U, Cossarizza A, Scala E,
Fanales-Belasio E, Ortolani C, Cozzi E, Monti D, Franceschi C and
Paganelli R: Increased cytokine production in mononuclear cells of
healthy elderly people. Eur J Immunol. 23:2375–2378. 1993.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Johnson FA, Dawson AJ and Meyer RL:
Activity-dependent refinement in the goldfish retinotectal system
is mediated by the dynamic regulation of processes withdrawal: An
in vivo imaging study. J Comp Neurol. 406:548–562. 1999. View Article : Google Scholar : PubMed/NCBI
|
41
|
Capuron L, Su S, Miller AH, Bremner JD,
Goldberg J, Vogt GJ, Maisano C, Jones L, Murrah NV and Vaccarino V:
Depressive symptoms and metabolic syndrome: Is inflammation the
underlying link? Biol Psychiatry. 64:896–900. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ouchi N, Parker JL, Lugus JJ and Walsh K:
Adipokines in inflammation and metabolic disease. Nat Rev Immunol.
11:85–97. 2011. View
Article : Google Scholar : PubMed/NCBI
|
43
|
Capuron L, Poitou C, Machaux-Tholliez D,
Frochot V, Bouillot JL, Basdevant A, Layé S and Clément K:
Relationship between adiposity, emotional status and eating
behaviour in obese women: Role of inflammation. Psychol Med.
41:1517–1528. 2011. View Article : Google Scholar
|
44
|
Cancello R, Henegar C, Viguerie N, Taleb
S, Poitou C, Rouault C, Coupaye M, Pelloux V, Hugol D, Bouillot JL,
et al: Reduction of macrophage infiltration and chemoattractant
gene expression changes in white adipose tissue of morbidly obese
subjects after surgery-induced weight loss. Diabetes. 54:2277–2286.
2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
McCrimmon RJ, Ryan CM and Frier BM:
Diabetes and cognitive dysfunction. Lancet. 379:2291–2299. 2012.
View Article : Google Scholar : PubMed/NCBI
|
46
|
McIntyre RS, Soczynska JK, Konarski JZ,
Woldeyohannes HO, Law CW, Miranda A, Fulgosi D and Kennedy SH:
Should depressive syndromes be reclassified as 'metabolic syndrome
type II'? Ann Clin Psychiatry. 19:257–264. 2007. View Article : Google Scholar : PubMed/NCBI
|
47
|
Wolkowitz OM, Epel ES, Reus VI and Mellon
SH: Depression gets old fast: Do stress and depression accelerate
cell aging? Depress Anxiety. 27:327–338. 2010. View Article : Google Scholar : PubMed/NCBI
|
48
|
Rush AJ, Trivedi MH, Wisniewski SR,
Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori
PW, Lebowitz BD, et al: Acute and longer-term outcomes in depressed
outpatients requiring one or several treatment steps: A STAR*D
report. Am J Psychiatry. 163:1905–1917. 2006. View Article : Google Scholar : PubMed/NCBI
|
49
|
Baune BT, Smith E, Reppermund S, Air T,
Samaras K, Lux O, Brodaty H, Sachdev P and Trollor JN: Inflammatory
biomarkers predict depressive, but not anxiety symptoms during
aging: The prospective Sydney Memory and Aging Study.
Psychoneuroendocrinology. 37:1521–1530. 2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Najjar S, Pearlman DM, Devinsky O, Najjar
A and Zagzag D: Neurovascular unit dysfunction with blood-brain
barrier hyper-permeability contributes to major depressive
disorder: A review of clinical and experimental evidence. J
Neuroinflammation. 10:1422013. View Article : Google Scholar
|
51
|
Zunszain PA, Hepgul N and Pariante CM:
Inflammation and depression. Curr Top Behav Neurosci. 14:135–151.
2013. View Article : Google Scholar
|
52
|
Kessler RC, Berglund P, Demler O, Jin R,
Merikangas KR and Walters EE: Lifetime prevalence and age-of-onset
distributions of DSM-IV disorders in the National Comorbidity
Survey Replication. Arch Gen Psychiatry. 62:593–602. 2005.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Papakostas GI, Shelton RC, Kinrys G, Henry
ME, Bakow BR, Lipkin SH, Pi B, Thurmond L and Bilello JA:
Assessment of a multi-assay, serum-based biological diagnostic test
for major depressive disorder: A pilot and replication study. Mol
Psychiatry. 18:332–339. 2013. View Article : Google Scholar
|
54
|
Rivest S: Regulation of innate immune
responses in the brain. Nat Rev Immunol. 9:429–439. 2009.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Yang WX, Terasaki T, Shiroki K, Ohka S,
Aoki J, Tanabe S, Nomura T, Terada E, Sugiyama Y and Nomoto A:
Efficient delivery of circulating poliovirus to the central nervous
system independently of poliovirus receptor. Virology. 229:421–428.
1997. View Article : Google Scholar : PubMed/NCBI
|
56
|
Aronsson F, Robertson B, Ljunggren HG and
Kristensson K: Invasion and persistence of the neuroadapted
influenza virus A/WSN/33 in the mouse olfactory system. Viral
Immunol. 16:415–423. 2003. View Article : Google Scholar : PubMed/NCBI
|
57
|
Schnell G, Joseph S, Spudich S, Price RW
and Swanstrom R: HIV-1 replication in the central nervous system
occurs in two distinct cell types. PLoS Pathog. 7:e10022862011.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Chen L, Liu J, Xu C, Keblesh J, Zang W and
Xiong H: HIV-1gp120 induces neuronal apoptosis through enhancement
of 4-aminopyridine-senstive outward K+ currents. PLoS One.
6:e259942011. View Article : Google Scholar : PubMed/NCBI
|
59
|
Chang JR, Mukerjee R, Bagashev A, Del
Valle L, Chabrashvili T, Hawkins BJ, He JJ and Sawaya BE: HIV-1 Tat
protein promotes neuronal dysfunction through disruption of
microRNAs. J Biol Chem. 288:85642013. View Article : Google Scholar
|
60
|
Brew BJ, Crowe SM, Landay A, Cysique LA
and Guillemin G: Neurodegeneration and ageing in the HAART era. J
Neuroimmune Pharmacol. 4:163–174. 2009. View Article : Google Scholar
|
61
|
Noh H, Jeon J and Seo H: Systemic
injection of LPS induces region-specific neuroinflammation and
mitochondrial dysfunction in normal mouse brain. Neurochem Int.
69:35–40. 2014. View Article : Google Scholar : PubMed/NCBI
|
62
|
Zhou L, Miranda-Saksena M and Saksena NK:
Viruses and neurodegeneration. Virol J. 10:1722013. View Article : Google Scholar : PubMed/NCBI
|
63
|
Ostanin DV, Bao J, Koboziev I, Gray L,
Robinson-Jackson SA, Kosloski-Davidson M, Price VH and Grisham MB:
T cell transfer model of chronic colitis: Concepts, considerations,
and tricks of the trade. Am J Physiol Gastrointest Liver Physiol.
296:G135–G146. 2009. View Article : Google Scholar :
|
64
|
Huber S, Schramm C, Lehr HA, Mann A,
Schmitt S, Becker C, Protschka M, Galle PR, Neurath MF and Blessing
M: Cutting edge: TGF-β signaling is required for the in vivo
expansion and immunosuppressive capacity of regulatory CD4+CD25+ T
cells. J Immunol. 173:6526–6531. 2004. View Article : Google Scholar : PubMed/NCBI
|
65
|
Martinez FO and Gordon S: The M1 and M2
paradigm of macrophage activation: time for reassessment.
F1000Prime Rep. 6:132014. View
Article : Google Scholar : PubMed/NCBI
|
66
|
Crutcher KA, Gendelman HE, Kipnis J,
Perez-Polo JR, Perry VH, Popovich PG and Weaver LC: Debate: 'is
increasing neuroinflammation beneficial for neural repair?'. J
Neuroimmune Pharmacol. 1:195–211. 2006. View Article : Google Scholar
|
67
|
Popovich PG and Longbrake EE: Can the
immune system be harnessed to repair the CNS? Nat Rev Neurosci.
9:481–493. 2008. View Article : Google Scholar : PubMed/NCBI
|
68
|
Tansey MG, McCoy MK and Frank-Cannon TC:
Neuroinflammatory mechanisms in Parkinson's disease: Potential
environmental triggers, pathways, and targets for early therapeutic
intervention. Exp Neurol. 208:1–25. 2007. View Article : Google Scholar : PubMed/NCBI
|
69
|
Schmid CD, Melchior B, Masek K,
Puntambekar SS, Danielson PE, Lo DD, Sutcliffe JG and Carson MJ:
Differential gene expression in LPS/IFNgamma activated microglia
and macrophages: In vitro versus in vivo. J Neurochem. 109(Suppl
1): 117–125. 2009. View Article : Google Scholar : PubMed/NCBI
|
70
|
Block ML and Hong JS: Microglia and
inflammation-mediated neurodegeneration: Multiple triggers with a
common mechanism. Prog Neurobiol. 76:77–98. 2005. View Article : Google Scholar : PubMed/NCBI
|
71
|
González H, Elgueta D, Montoya A and
Pacheco R: Neuroimmune regulation of microglial activity involved
in neuroinflammation and neurodegenerative diseases. J
Neuroimmunol. 274:1–13. 2014. View Article : Google Scholar : PubMed/NCBI
|
72
|
Henkel JS, Engelhardt JI, Siklós L,
Simpson EP, Kim SH, Pan T, Goodman JC, Siddique T, Beers DR and
Appel SH: Presence of dendritic cells, MCP-1, and activated
microglia/macrophages in amyotrophic lateral sclerosis spinal cord
tissue. Ann Neurol. 55:221–235. 2004. View Article : Google Scholar : PubMed/NCBI
|
73
|
Mrak RE and Griffin WST: Glia and their
cytokines in progression of neurodegeneration. Neurobiol Aging.
26:349–354. 2005. View Article : Google Scholar : PubMed/NCBI
|
74
|
Rock RB, Gekker G, Hu S, Sheng WS, Cheeran
M, Lokensgard JR and Peterson PK: Role of microglia in central
nervous system infections. Clin Microbiol Rev. 17:942–964. 2004.
View Article : Google Scholar : PubMed/NCBI
|
75
|
Qian L, Tan KS, Wei SJ, Wu HM, Xu Z,
Wilson B, Lu RB, Hong JS and Flood PM: Microglia-mediated
neurotoxicity is inhibited by morphine through an opioid
receptor-independent reduction of NADPH oxidase activity. J
Immunol. 179:1198–1209. 2007. View Article : Google Scholar : PubMed/NCBI
|
76
|
Gordon R, Anantharam V, Kanthasamy AG and
Kanthasamy A: Proteolytic activation of proapoptotic kinase protein
kinase Cδ by tumor necrosis factor α death receptor signaling in
dopaminergic neurons during neuroinflammation. J Neuroinflammation.
9:822012. View Article : Google Scholar
|
77
|
Magro F, Fraga S, Ribeiro T and
Soares-da-Silva P: Decreased availability of intestinal dopamine in
transmural colitis may relate to inhibitory effects of interferon-γ
upon L-DOPA uptake. Acta Physiol Scand. 180:379–386. 2004.
View Article : Google Scholar : PubMed/NCBI
|
78
|
Panaro MA, Lofrumento DD, Saponaro C, De
Nuccio F, Cianciulli A, Mitolo V and Nicolardi G: Expression of
TLR4 and CD14 in the central nervous system (CNS) in a MPTP mouse
model of Parkinson's-like disease. Immunopharmacol Immunotoxicol.
30:729–740. 2008. View Article : Google Scholar : PubMed/NCBI
|
79
|
Querfurth HW and LaFerla FM: Alzheimer's
disease. N Engl J Med. 362:329–344. 2010. View Article : Google Scholar : PubMed/NCBI
|
80
|
Braak H, Del Tredici K, Rüb U, de Vos RA,
Jansen Steur EN and Braak E: Staging of brain pathology related to
sporadic Parkinson's disease. Neurobiol Aging. 24:197–211. 2003.
View Article : Google Scholar
|
81
|
Saccon RA, Bunton-Stasyshyn RK, Fisher EM
and Fratta P: Is SOD1 loss of function involved in amyotrophic
lateral sclerosis? Brain. 136:2342–2358. 2013. View Article : Google Scholar : PubMed/NCBI
|
82
|
Lu L, Lan Q, Li Z, Zhou X, Gu J, Li Q,
Wang J, Chen M, Liu Y, Shen Y, et al: Critical role of all-trans
retinoic acid in stabilizing human natural regulatory T cells under
inflammatory conditions. Proc Natl Acad Sci USA. 111:E3432–E3440.
2014. View Article : Google Scholar : PubMed/NCBI
|
83
|
Appel SH: CD4+ T cells mediate
cytotoxicity in neurodegenerative diseases. J Clin Invest.
119:13–15. 2009.
|
84
|
Reynolds AD, Stone DK, Mosley RL and
Gendelman HE: Proteomic studies of nitrated alpha-synuclein
microglia regulation by CD4+CD25+ T cells. J Proteome Res.
8:3497–3511. 2009. View Article : Google Scholar : PubMed/NCBI
|