Open Access

Role of neuroinflammation in neurodegenerative diseases (Review)

  • Authors:
    • Wei‑Wei Chen
    • Xia Zhang
    • Wen‑Juan Huang
  • View Affiliations

  • Published online on: February 29, 2016     https://doi.org/10.3892/mmr.2016.4948
  • Pages: 3391-3396
  • Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Neurodegeneration is a phenomenon that occurs in the central nervous system through the hallmarks associating the loss of neuronal structure and function. Neurodegeneration is observed after viral insult and mostly in various so-called ‘neurodegenerative diseases’, generally observed in the elderly, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis that negatively affect mental and physical functioning. Causative agents of neurodegeneration have yet to be identified. However, recent data have identified the inflammatory process as being closely linked with multiple neurodegenerative pathways, which are associated with depression, a consequence of neurodegenerative disease. Accordingly, pro‑inflammatory cytokines are important in the pathophysiology of depression and dementia. These data suggest that the role of neuroinflammation in neurodegeneration must be fully elucidated, since pro‑inflammatory agents, which are the causative effects of neuroinflammation, occur widely, particularly in the elderly in whom inflammatory mechanisms are linked to the pathogenesis of functional and mental impairments. In this review, we investigated the role played by the inflammatory process in neurodegenerative diseases.

References

1 

Campbell IL, Krucker T, Steffensen S, Akwa Y, Powell HC, Lane T, Carr DJ, Gold LH, Henriksen SJ and Siggins GR: Structural and functional neuropathology in transgenic mice with CNS expression of IFN-α. Brain Res. 835:46–61. 1999. View Article : Google Scholar : PubMed/NCBI

2 

Hof PR and Mobbs CV: Handbook of the neuroscience of aging. Elsevier/Academic Press; Amsterdam: pp. 1–53. 2010

3 

Yuan J and Yankner BA: Apoptosis in the nervous system. Nature. 407:802–809. 2000. View Article : Google Scholar : PubMed/NCBI

4 

Przedborski S, Vila M and Jackson-Lewis V: Neurodegeneration: What is it and where are we? J Clin Invest. 111:3–10. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Amor S, Puentes F, Baker D and van der Valk P: Inflammation in neurodegenerative diseases. Immunology. 129:154–169. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Shinya K, Shimada A, Ito T, Otsuki K, Morita T, Tanaka H, Takada A, Kida H and Umemura T: Avian influenza virus intranasally inoculated infects the central nervous system of mice through the general visceral afferent nerve. Arch Virol. 145:187–195. 2000. View Article : Google Scholar : PubMed/NCBI

7 

Reinacher M, Bonin J, Narayan O and Scholtissek C: Pathogenesis of neurovirulent influenza A virus infection in mice. Route of entry of virus into brain determines infection of different populations of cells. Lab Invest. 49:686–692. 1983.PubMed/NCBI

8 

Jadidi-Niaragh F and Mirshafiey A: Histamine and histamine receptors in pathogenesis and treatment of multiple sclerosis. Neuropharmacology. 59:180–189. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Chastain EM, Duncan DS, Rodgers JM and Miller SD: The role of antigen presenting cells in multiple sclerosis. Biochim Biophys Acta. 1812:265–274. 2011. View Article : Google Scholar

10 

Czirr E and Wyss-Coray T: The immunology of neurodegeneration. J Clin Invest. 122:1156–1163. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Ransohoff RM and Perry VH: Microglial physiology: Unique stimuli, specialized responses. Annu Rev Immunol. 27:119–145. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Perry VH and Teeling J: Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Sem Immunopathol. 35:601–612. 2013. View Article : Google Scholar

13 

Schwartz M, Kipnis J, Rivest S and Prat A: How do immune cells support and shape the brain in health, disease, and aging? J Neurosci. 33:17587–17596. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Sofroniew MV and Vinters HV: Astrocytes: Biology and pathology. Acta Neuropathol. 119:7–35. 2010. View Article : Google Scholar

15 

Wyss-Coray T and Mucke L: Inflammation in neurodegenerative disease - a double-edged sword. Neuron. 35:419–432. 2002. View Article : Google Scholar : PubMed/NCBI

16 

Lull ME and Block ML: Microglial activation and chronic neurodegeneration. Neurotherapeutics. 7:354–365. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Das Sarma J: Microglia-mediated neuroinflammation is an amplifier of virus-induced neuropathology. J Neurovirol. 20:122–136. 2014. View Article : Google Scholar

18 

Glass CK, Saijo K, Winner B, Marchetto MC and Gage FH: Mechanisms underlying inflammation in neurodegeneration. Cell. 140:918–934. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Teeling JL and Perry VH: Systemic infection and inflammation in acute CNS injury and chronic neurodegeneration: Underlying mechanisms. Neuroscience. 158:1062–1073. 2009. View Article : Google Scholar

20 

Taylor JP, Hardy J and Fischbeck KH: Toxic proteins in neurodegenerative disease. Science. 296:1991–1995. 2002. View Article : Google Scholar : PubMed/NCBI

21 

Chevalier-Larsen E and Holzbaur EL: Axonal transport and neurodegenerative disease. Biochim Biophys Acta. 1762:1094–1108. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Chen H and Chan DC: Mitochondrial dynamics - fusion, fission, movement, and mitophagy - in neurodegenerative diseases. Hum Mol Genet. 18(R2): R169–R176. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Allison DJ and Ditor DS: The common inflammatory etiology of depression and cognitive impairment: A therapeutic target. J Neuroinflammation. 11:1512014. View Article : Google Scholar : PubMed/NCBI

24 

de Leeuw FE, de Groot JC, Oudkerk M, Witteman JC, Hofman A, van Gijn J and Breteler MM: Hypertension and cerebral white matter lesions in a prospective cohort study. Brain. 125:765–772. 2002. View Article : Google Scholar : PubMed/NCBI

25 

Schiffrin EL: Inflammation, immunity and development of essential hypertension. J Hypertens. 32:228–229. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Shimizu M, Ishikawa J, Yano Y, Hoshide S, Shimada K and Kario K: The relationship between the morning blood pressure surge and low-grade inflammation on silent cerebral infarct and clinical stroke events. Atherosclerosis. 219:316–321. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Tousoulis D, Kampoli AM, Papageorgiou N, Androulakis E, Antoniades C, Toutouzas K and Stefanadis C: Pathophysiology of atherosclerosis: The role of inflammation. Curr Pharm Des. 17:4089–4110. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Di Napoli M, Godoy DA, Campi V, Masotti L, Smith CJ, Parry Jones AR, Hopkins SJ, Slevin M, Papa F, Mogoanta L, et al: C-reactive protein in intracerebral hemorrhage: Time course, tissue localization, and prognosis. Neurology. 79:690–699. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Di Napoli M, Parry-Jones AR, Smith CJ, Hopkins SJ, Slevin M, Masotti L, Campi V, Singh P, Papa F, Popa-Wagner A, et al: C-reactive protein predicts hematoma growth in intracerebral hemorrhage. Stroke. 45:59–65. 2014. View Article : Google Scholar

30 

Rizzo M, Corrado E, Coppola G, Muratori I, Mezzani A, Novo G and Novo S: The predictive role of C-reactive protein in patients with hypertension and subclinical atherosclerosis. Intern Med J. 39:539–545. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Rizzo M, Corrado E, Coppola G, Muratori I, Novo G and Novo S: Markers of inflammation are strong predictors of subclinical and clinical atherosclerosis in women with hypertension. Coron Artery Dis. 20:15–20. 2009. View Article : Google Scholar

32 

Goossens GH: The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav. 94:206–218. 2008. View Article : Google Scholar

33 

Goossens GH, Bizzarri A, Venteclef N, Essers Y, Cleutjens JP, Konings E, Jocken JW, Čajlaković M, Ribitsch V, Clément K, et al: Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation. 124:67–76. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Howcroft TK, Campisi J, Louis GB, Smith MT, Wise B, Wyss-Coray T, Augustine AD, McElhaney JE, Kohanski R and Sierra F: The role of inflammation in age-related disease. Aging (Albany NY). 5:84–93. 2013. View Article : Google Scholar

35 

Olefsky JM and Glass CK: Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 72:219–246. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Bruunsgaard H, Pedersen M and Pedersen BK: Aging and proinflammatory cytokines. Curr Opin Hematol. 8:131–136. 2001. View Article : Google Scholar : PubMed/NCBI

37 

Fagiolo U, Cossarizza A, Santacaterina S, Ortolani C, Monti D, Paganelli R and Franceschi C: Increased cytokine production by peripheral blood mononuclear cells from healthy elderly people. Ann N Y Acad Sci. 663:490–493. 1992. View Article : Google Scholar : PubMed/NCBI

38 

Fagiolo U, Amadori A, Cozzi E, Bendo R, Lama M, Douglas A and Palù G: Humoral and cellular immune response to influenza virus vaccination in aged humans. Aging (Milano). 5:451–458. 1993.

39 

Fagiolo U, Cossarizza A, Scala E, Fanales-Belasio E, Ortolani C, Cozzi E, Monti D, Franceschi C and Paganelli R: Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol. 23:2375–2378. 1993. View Article : Google Scholar : PubMed/NCBI

40 

Johnson FA, Dawson AJ and Meyer RL: Activity-dependent refinement in the goldfish retinotectal system is mediated by the dynamic regulation of processes withdrawal: An in vivo imaging study. J Comp Neurol. 406:548–562. 1999. View Article : Google Scholar : PubMed/NCBI

41 

Capuron L, Su S, Miller AH, Bremner JD, Goldberg J, Vogt GJ, Maisano C, Jones L, Murrah NV and Vaccarino V: Depressive symptoms and metabolic syndrome: Is inflammation the underlying link? Biol Psychiatry. 64:896–900. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Ouchi N, Parker JL, Lugus JJ and Walsh K: Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 11:85–97. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Capuron L, Poitou C, Machaux-Tholliez D, Frochot V, Bouillot JL, Basdevant A, Layé S and Clément K: Relationship between adiposity, emotional status and eating behaviour in obese women: Role of inflammation. Psychol Med. 41:1517–1528. 2011. View Article : Google Scholar

44 

Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, Coupaye M, Pelloux V, Hugol D, Bouillot JL, et al: Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 54:2277–2286. 2005. View Article : Google Scholar : PubMed/NCBI

45 

McCrimmon RJ, Ryan CM and Frier BM: Diabetes and cognitive dysfunction. Lancet. 379:2291–2299. 2012. View Article : Google Scholar : PubMed/NCBI

46 

McIntyre RS, Soczynska JK, Konarski JZ, Woldeyohannes HO, Law CW, Miranda A, Fulgosi D and Kennedy SH: Should depressive syndromes be reclassified as 'metabolic syndrome type II'? Ann Clin Psychiatry. 19:257–264. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Wolkowitz OM, Epel ES, Reus VI and Mellon SH: Depression gets old fast: Do stress and depression accelerate cell aging? Depress Anxiety. 27:327–338. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, et al: Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. Am J Psychiatry. 163:1905–1917. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Baune BT, Smith E, Reppermund S, Air T, Samaras K, Lux O, Brodaty H, Sachdev P and Trollor JN: Inflammatory biomarkers predict depressive, but not anxiety symptoms during aging: The prospective Sydney Memory and Aging Study. Psychoneuroendocrinology. 37:1521–1530. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Najjar S, Pearlman DM, Devinsky O, Najjar A and Zagzag D: Neurovascular unit dysfunction with blood-brain barrier hyper-permeability contributes to major depressive disorder: A review of clinical and experimental evidence. J Neuroinflammation. 10:1422013. View Article : Google Scholar

51 

Zunszain PA, Hepgul N and Pariante CM: Inflammation and depression. Curr Top Behav Neurosci. 14:135–151. 2013. View Article : Google Scholar

52 

Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR and Walters EE: Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 62:593–602. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Papakostas GI, Shelton RC, Kinrys G, Henry ME, Bakow BR, Lipkin SH, Pi B, Thurmond L and Bilello JA: Assessment of a multi-assay, serum-based biological diagnostic test for major depressive disorder: A pilot and replication study. Mol Psychiatry. 18:332–339. 2013. View Article : Google Scholar

54 

Rivest S: Regulation of innate immune responses in the brain. Nat Rev Immunol. 9:429–439. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Yang WX, Terasaki T, Shiroki K, Ohka S, Aoki J, Tanabe S, Nomura T, Terada E, Sugiyama Y and Nomoto A: Efficient delivery of circulating poliovirus to the central nervous system independently of poliovirus receptor. Virology. 229:421–428. 1997. View Article : Google Scholar : PubMed/NCBI

56 

Aronsson F, Robertson B, Ljunggren HG and Kristensson K: Invasion and persistence of the neuroadapted influenza virus A/WSN/33 in the mouse olfactory system. Viral Immunol. 16:415–423. 2003. View Article : Google Scholar : PubMed/NCBI

57 

Schnell G, Joseph S, Spudich S, Price RW and Swanstrom R: HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathog. 7:e10022862011. View Article : Google Scholar : PubMed/NCBI

58 

Chen L, Liu J, Xu C, Keblesh J, Zang W and Xiong H: HIV-1gp120 induces neuronal apoptosis through enhancement of 4-aminopyridine-senstive outward K+ currents. PLoS One. 6:e259942011. View Article : Google Scholar : PubMed/NCBI

59 

Chang JR, Mukerjee R, Bagashev A, Del Valle L, Chabrashvili T, Hawkins BJ, He JJ and Sawaya BE: HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs. J Biol Chem. 288:85642013. View Article : Google Scholar

60 

Brew BJ, Crowe SM, Landay A, Cysique LA and Guillemin G: Neurodegeneration and ageing in the HAART era. J Neuroimmune Pharmacol. 4:163–174. 2009. View Article : Google Scholar

61 

Noh H, Jeon J and Seo H: Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain. Neurochem Int. 69:35–40. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Zhou L, Miranda-Saksena M and Saksena NK: Viruses and neurodegeneration. Virol J. 10:1722013. View Article : Google Scholar : PubMed/NCBI

63 

Ostanin DV, Bao J, Koboziev I, Gray L, Robinson-Jackson SA, Kosloski-Davidson M, Price VH and Grisham MB: T cell transfer model of chronic colitis: Concepts, considerations, and tricks of the trade. Am J Physiol Gastrointest Liver Physiol. 296:G135–G146. 2009. View Article : Google Scholar :

64 

Huber S, Schramm C, Lehr HA, Mann A, Schmitt S, Becker C, Protschka M, Galle PR, Neurath MF and Blessing M: Cutting edge: TGF-β signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J Immunol. 173:6526–6531. 2004. View Article : Google Scholar : PubMed/NCBI

65 

Martinez FO and Gordon S: The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6:132014. View Article : Google Scholar : PubMed/NCBI

66 

Crutcher KA, Gendelman HE, Kipnis J, Perez-Polo JR, Perry VH, Popovich PG and Weaver LC: Debate: 'is increasing neuroinflammation beneficial for neural repair?'. J Neuroimmune Pharmacol. 1:195–211. 2006. View Article : Google Scholar

67 

Popovich PG and Longbrake EE: Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci. 9:481–493. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Tansey MG, McCoy MK and Frank-Cannon TC: Neuroinflammatory mechanisms in Parkinson's disease: Potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol. 208:1–25. 2007. View Article : Google Scholar : PubMed/NCBI

69 

Schmid CD, Melchior B, Masek K, Puntambekar SS, Danielson PE, Lo DD, Sutcliffe JG and Carson MJ: Differential gene expression in LPS/IFNgamma activated microglia and macrophages: In vitro versus in vivo. J Neurochem. 109(Suppl 1): 117–125. 2009. View Article : Google Scholar : PubMed/NCBI

70 

Block ML and Hong JS: Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism. Prog Neurobiol. 76:77–98. 2005. View Article : Google Scholar : PubMed/NCBI

71 

González H, Elgueta D, Montoya A and Pacheco R: Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol. 274:1–13. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Henkel JS, Engelhardt JI, Siklós L, Simpson EP, Kim SH, Pan T, Goodman JC, Siddique T, Beers DR and Appel SH: Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol. 55:221–235. 2004. View Article : Google Scholar : PubMed/NCBI

73 

Mrak RE and Griffin WST: Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging. 26:349–354. 2005. View Article : Google Scholar : PubMed/NCBI

74 

Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR and Peterson PK: Role of microglia in central nervous system infections. Clin Microbiol Rev. 17:942–964. 2004. View Article : Google Scholar : PubMed/NCBI

75 

Qian L, Tan KS, Wei SJ, Wu HM, Xu Z, Wilson B, Lu RB, Hong JS and Flood PM: Microglia-mediated neurotoxicity is inhibited by morphine through an opioid receptor-independent reduction of NADPH oxidase activity. J Immunol. 179:1198–1209. 2007. View Article : Google Scholar : PubMed/NCBI

76 

Gordon R, Anantharam V, Kanthasamy AG and Kanthasamy A: Proteolytic activation of proapoptotic kinase protein kinase Cδ by tumor necrosis factor α death receptor signaling in dopaminergic neurons during neuroinflammation. J Neuroinflammation. 9:822012. View Article : Google Scholar

77 

Magro F, Fraga S, Ribeiro T and Soares-da-Silva P: Decreased availability of intestinal dopamine in transmural colitis may relate to inhibitory effects of interferon-γ upon L-DOPA uptake. Acta Physiol Scand. 180:379–386. 2004. View Article : Google Scholar : PubMed/NCBI

78 

Panaro MA, Lofrumento DD, Saponaro C, De Nuccio F, Cianciulli A, Mitolo V and Nicolardi G: Expression of TLR4 and CD14 in the central nervous system (CNS) in a MPTP mouse model of Parkinson's-like disease. Immunopharmacol Immunotoxicol. 30:729–740. 2008. View Article : Google Scholar : PubMed/NCBI

79 

Querfurth HW and LaFerla FM: Alzheimer's disease. N Engl J Med. 362:329–344. 2010. View Article : Google Scholar : PubMed/NCBI

80 

Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN and Braak E: Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. 24:197–211. 2003. View Article : Google Scholar

81 

Saccon RA, Bunton-Stasyshyn RK, Fisher EM and Fratta P: Is SOD1 loss of function involved in amyotrophic lateral sclerosis? Brain. 136:2342–2358. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Lu L, Lan Q, Li Z, Zhou X, Gu J, Li Q, Wang J, Chen M, Liu Y, Shen Y, et al: Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proc Natl Acad Sci USA. 111:E3432–E3440. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Appel SH: CD4+ T cells mediate cytotoxicity in neurodegenerative diseases. J Clin Invest. 119:13–15. 2009.

84 

Reynolds AD, Stone DK, Mosley RL and Gendelman HE: Proteomic studies of nitrated alpha-synuclein microglia regulation by CD4+CD25+ T cells. J Proteome Res. 8:3497–3511. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2016
Volume 13 Issue 4

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Chen, W., Zhang, X., & Huang, W. (2016). Role of neuroinflammation in neurodegenerative diseases (Review). Molecular Medicine Reports, 13, 3391-3396. https://doi.org/10.3892/mmr.2016.4948
MLA
Chen, W., Zhang, X., Huang, W."Role of neuroinflammation in neurodegenerative diseases (Review)". Molecular Medicine Reports 13.4 (2016): 3391-3396.
Chicago
Chen, W., Zhang, X., Huang, W."Role of neuroinflammation in neurodegenerative diseases (Review)". Molecular Medicine Reports 13, no. 4 (2016): 3391-3396. https://doi.org/10.3892/mmr.2016.4948