Open Access

Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis

  • Authors:
    • Chongyang Shen
    • Puchang Lie
    • Tianyu Miao
    • Meixing Yu
    • Qiao Lu
    • Ting Feng
    • Jinrong Li
    • Tingting Zu
    • Xiaohuan Liu
    • Hong Li
  • View Affiliations

  • Published online on: March 4, 2015     https://doi.org/10.3892/mmr.2015.3409
  • Pages: 20-30
  • Copyright: © Shen et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Umbilical cord mesenchymal stem cells (UC‑MSCs) have been suggested as a candidate for various clinical applications, however, major limitations include the lack of organ‑specific accumulation and low survival rates of transplanted cells. In the present study, it was hypothesized that the paracrine effects of UC‑MSCs may enhance stem cell‑based tissue repair and regeneration by promoting the specific homing of stem/progenitor cells and the overall ability to drive them to the damaged area. UC‑MSCs‑derived conditioned medium (UC‑CM) was analyzed using liquid chip and ELISA techniques. In vitro tube formation assays of human umbilical vein endothelial cells (HUVECs) and UC‑MSCs were then performed to assess the angiogenic properties of UC‑CM. Subsequently, UC‑MSCs, HUVECs and fibroblasts were labeled with PKH26 for an in vivo cell migration assay. The expression levels of C‑X‑C chemokine receptor 4 (CXCR4), C‑C chemokine receptor 2 (CCR2) and c‑met were determined in the UC‑MSCs, HUVECs and fibroblasts using reverse transcription‑quantitative polymerase chain reaction and flow cytometry. UC‑CM was incubated with or without antibodies, and the contribution of stromal cell‑derived factor 1 (SDF‑1), monocyte chemotactic protein 1 (MCP‑1) and hepatocyte growth factor (HGF) on the migration of cells was investigated in vitro. The results demonstrated that UC‑MSCs secreted different cytokines and chemokines, including increased quantities of SDF‑1, MCP‑1 and HGF, in addition to the angiogenic factors, vascular cell adhesion protein‑1, interleukin‑8, insulin‑like growth factor‑1 and vascular endothelial growth factor. The total lengths of the tubes were significantly increased in the UC‑MSCs and HUVECs incubated in UC‑CM compared with those incubated in Dulbecco's modified Eagle's medium. In vivo cell migration assays demonstrated that UC‑CM was a chemotactic stimulus for the UC‑MSCs and HUVECs. In vitro Matrigel migration and scratch healing assays demonstrated that UC‑CM increased the migration of CXCR4‑postive or/and CCR2‑positive cells in a dose‑dependent manner. In addition, different molecules were screened under antibody‑based blocking migration conditions. The data revealed that the SDF‑1/CXCR4 and MCP‑1/CCR2 axes were involved in the chemoattractive activity of UC‑CM and suggested that the effective paracrine factor of UC‑CM is a large complex rather than a single factor. The results of the present study supported the hypothesis that UC‑MSCs release soluble factors, which may extend the therapeutic applicability of stem cells.

References

1 

Wang HS, Hung SC, Peng ST, et al: Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 22:1330–1337. 2004. View Article : Google Scholar

2 

Madlambayan G and Rogers I: Umbilical cord-derived stem cells for tissue therapy: current and future uses. Regen Med. 1:777–787. 2006. View Article : Google Scholar

3 

Ruan ZB, Zhu L, Yin YG and Chen GC: The mechanism underlying the differentiation of human umbilical cord-derived mesenchymal stem cells into myocardial cells induced by 5-azacytidine. Indian J Med Sci. 64:402–407. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Schneider RK, Püllen A, Kramann R, et al: Long-term survival and characterisation of human umbilical cord-derived mesenchymal stem cells on dermal equivalents. Differentiation. 79:182–193. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Rabb H: Paracrine and differentiation mechanisms underlying stem cell therapy for the damaged kidney. Am J Physiol Renal Physiol. 289:F29–30. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Deschepper M, Oudina K, David B, et al: Survival and function of mesenchymal stem cells (MSCs) depend on glucose to overcome exposure to long-term, severe and continuous hypoxia. J Cell Mol Med. 15:1505–1514. 2011. View Article : Google Scholar

7 

Nagaya N, Kangawa K, Itoh T, et al: Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation. 112:1128–1135. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Müller-Ehmsen J, Krausgrill B, Burst V, et al: Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J Mol Cell Cardiol. 41:876–884. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Zhao JJ, Liu JL, Liu L and Jia HY: Protection of mesenchymal stem cells on acute kidney injury. Mol Med Rep. 9:91–96. 2014.

10 

Chen Y, Xiang LX, Shao JZ, et al: Recruitment of endogenous bone marrow mesenchymal stem cells towards injured liver. J Cell Mol Med. 14:1494–1508. 2010. View Article : Google Scholar

11 

Tasso R, Augello A, Boccardo S, et al: Recruitment of a host’s osteoprogenitor cells using exogenous mesenchymal stem cells seeded on porous ceramic. Tissue Eng Part A. 15:2203–2212. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Tögel F, Isaac J, Hu Z, Weiss K and Westenfelder C: Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int. 67:1772–1784. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Ma J, Ge J, Zhang S, et al: Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardiol. 100:217–223. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Son BR, Marquez-Curtis LA, Kucia M, et al: Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells. 24:1254–1264. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Somerset DA, Li XF, Afford S, et al: Ontogeny of hepatocyte growth factor (HGF) and its receptor (c-met) in human placenta: reduced HGF expression in intrauterine growth restriction. Am J Pathol. 153:1139–1147. 1998. View Article : Google Scholar : PubMed/NCBI

16 

Liao WT, Yu HS, Arbiser JL, et al: Enhanced MCP-1 release by keloid CD14+ cells augments fibroblast proliferation: role of MCP-1 and Akt pathway in keloids. Exp Dermatol. 19:e142–e150. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Furuichi K, Wada T, Iwata Y, et al: CCR2 signaling contributes to ischemia-reperfusion injury in kidney. J Am Soc Nephrol. 14:2503–2515. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Shyu WC, Lee YJ, Liu DD, Lin SZ and Li H: Homing genes, cell therapy and stroke. Front Biosci. 11:899–907. 2006. View Article : Google Scholar

19 

Ashrafpour H, Huang N, Neligan PC, et al: Vasodilator effect and mechanism of action of vascular endothelial growth factor in skin vasculature. Am J Physiol Heart Circ Physiol. 286:H946–H954. 2004. View Article : Google Scholar

20 

Morimoto N, Saso Y, Tomihata K, et al: Viability and function of autologous and allogeneic fibroblasts seeded in dermal substitutes after implantation. J Surg Res. 125:56–67. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Lamme EN, van Leeuwen RT, Mekkes JR and Middelkoop E: Allogeneic fibroblasts in dermal substitutes induce inflammation and scar formation. Wound Repair Regen. 10:152–160. 2002. View Article : Google Scholar : PubMed/NCBI

22 

Cavallari G, Olivi E, Bianchi F, et al: Mesenchymal stem cells and islet cotransplantation in diabetic rats: improved islet graft revas-cularization and function by human adipose tissue-derived stem cells preconditioned with natural molecules. Cell Transplant. 21:2771–2781. 2012. View Article : Google Scholar

23 

Wynn RF, Hart CA, Corradi-Perini C, et al: A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood. 104:2643–2645. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Dai W, Hale SL and Kloner RA: Role of a paracrine action of mesen-chymal stem cells in the improvement of left ventricular function after coronary artery occlusion in rats. Regen Med. 2:63–68. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Li Z, Guo J, Chang Q and Zhang A: Paracrine role for mesen-chymal stem cells in acute myocardial infarction. Biol Pharm Bull. 32:1343–1346. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Ohnishi S, Sumiyoshi H, Kitamura S and Nagaya N: Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett. 581:3961–3966. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Nakanishi C, Yamagishi M, Yamahara K, et al: Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells. Biochem Biophys Res Commun. 374:11–16. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Dwyer RM, Potter-Beirne SM, Harrington KA, et al: Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res. 13:5020–5027. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Chen Z, Htay A, Dos Santos W, et al: In vitro angiogenesis by human umbilical vein endothelial cells (HUVEC) induced by three-dimensional co-culture with glioblastoma cells. J Neurooncol. 92:121–128. 2009. View Article : Google Scholar

30 

Jacob M, Chang L and Puré E: Fibroblast activation protein in remodeling tissues. Curr Mol Med. 12:1220–1243. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Mbalaviele G, Orcel P, Bouizar Z, Jullienne A and De Vernejoul MC: Transforming growth factor-beta enhances calcitonin-induced cyclic AMP production and the number of calcitonin receptors in long-term cultures of human umbilical cord blood monocytes in the presence of 1,25-dihydroxychole-calciferol. J Cell Physiol. 152:486–493. 1992. View Article : Google Scholar : PubMed/NCBI

32 

Peled A, Kollet O, Ponomaryov T, et al: The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood. 95:3289–3296. 2000.PubMed/NCBI

33 

Wang L, Li Y, Chen J, et al: Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp Hematol. 30:831–836. 2002. View Article : Google Scholar : PubMed/NCBI

34 

Patel AV and Krimm RF: BDNF is required for the survival of differentiated geniculate ganglion neurons. Dev Biol. 340:419–429. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Sohni A and Verfaillie CM: Mesenchymal stem cells migration homing and tracking. Stem Cells Int. 130763:20132013.

36 

Lapidot T and Kollet O: The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2m(null) mice. Leukemia. 16:1992–2003. 2002. View Article : Google Scholar : PubMed/NCBI

37 

Ringe J, Strassburg S, Neumann K, et al: Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem. 101:135–146. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Trusolino L and Comoglio PM: Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer. 2:289–300. 2002. View Article : Google Scholar : PubMed/NCBI

39 

Birchmeier C, Birchmeier W, Gherardi E and Vande Woude GF: Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 4:915–925. 2003. View Article : Google Scholar : PubMed/NCBI

40 

Duan HF, Wu CT, Wu DL, et al: Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor. Mol Ther. 8:467–474. 2003. View Article : Google Scholar : PubMed/NCBI

41 

Oyagi S, Hirose M, Kojima M, et al: Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats. J Hepatol. 44:742–748. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Burgazli KM, Bui KL, Mericliler M, Albayrak AT, Parahuleva M and Erdogan A: The effects of different types of statins on proliferation and migration of HGF-induced Human Umbilical Vein Endothelial Cells (HUVECs). Eur Rev Med Pharmacol Sci. 17:2874–2883. 2013.PubMed/NCBI

Related Articles

Journal Cover

July 2015
Volume 12 Issue 1

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Shen, C., Lie, P., Miao, T., Yu, M., Lu, Q., Feng, T. ... Li, H. (2015). Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis. Molecular Medicine Reports, 12, 20-30. https://doi.org/10.3892/mmr.2015.3409
MLA
Shen, C., Lie, P., Miao, T., Yu, M., Lu, Q., Feng, T., Li, J., Zu, T., Liu, X., Li, H."Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis". Molecular Medicine Reports 12.1 (2015): 20-30.
Chicago
Shen, C., Lie, P., Miao, T., Yu, M., Lu, Q., Feng, T., Li, J., Zu, T., Liu, X., Li, H."Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis". Molecular Medicine Reports 12, no. 1 (2015): 20-30. https://doi.org/10.3892/mmr.2015.3409