The interaction between oral melphalan and gastric antisecretory drugs: Impact on clinical efficacy and toxicity

FUMIAKI KITAZAWA\(^1\), YOKO KADO\(^1\), KUMI UEDA\(^1\), TAKATOSHI KOKUFU\(^1\), SHIN-ICHI FUCHIDA\(^2\), AKIRA OKANO\(^2\), MAYUMI HATSUSE\(^2\), SATOSHI MURAKAMI\(^2\), YUKO NAKAYAMA\(^3\), KOHJI TAKARA\(^3\) and CHIHIRO SHIMAZAKI\(^2\)

Departments of \(^1\)Pharmacy and \(^2\)Hematology, Japan Community Health Care Organization Kyoto Kuramaguchi Medical Center, Kyoto, Kyoto 603-8151; \(^3\)Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo 670-8524, Japan

Received July 15, 2015; Accepted November 6, 2015

DOI: 10.3892/mco.2015.683

Abstract. The aim of the present study was to clarify whether gastric antisecretory drugs affect the clinical efficacy and toxicity of orally administered melphalan in patients with multiple myeloma. A total of 10 patients receiving bortezomib plus oral melphalan and prednisolone (VMP) therapy between December 2011 and November 2014 were analyzed retrospectively. The patients were divided into a control group (seven patients) and a concomitant group (three patients), who were also administered with gastric antisecretory drugs. The gastric antisecretory drugs included rabeprazole sodium (two patients) and famotidine (one patient). No significant differences between the groups were observed in either the characteristics of the patients or the VMP regimen. The levels of monoclonal protein (M protein) in the control group tended to decrease (with a VMP cycle-dependency), although they were primarily stable in the concomitant group. During the second and third VMP cycles, the levels of M protein were markedly lower in the control group compared with the concomitant group. All the patients in the control group achieved a partial response, whereas those in the concomitant group exhibited stable disease. Hematological toxicity levels were revealed to be comparable between the two groups, whereas gastrointestinal toxicity was more prevalent in the control group. In conclusion, the results of the present study suggested that the clinical efficacy of melphalan may be reduced by the co-administration of gastric antisecretory drugs. This interaction may result in decreased toxicity and clinical efficacy of melphalan.

Introduction

Multiple myeloma (MM) is a malignant neoplasm characterized by the clonal proliferation of plasma cells in the bone marrow that produce monoclonal protein (M protein) (1,2). Although MM remains an incurable malignancy, the survival rates have improved markedly (2). The first notable improvement came following the introduction of autologous stem cell transplantation (3,4). In addition, the use of drugs with antiangiogenic, antiproliferative and immunomodulatory effects, including thalidomide (5) and lenalidomide (6,7), and proteasome inhibitors, including bortezomib (8,9), were introduced (10). These agents have been combined with melphalan, resulting in high response rates in patients with MM (11-14).

Melphalan is a cytotoxic agent used extensively in the treatment of MM (15,16). For decades, the combination of melphalan with prednisolone provided the standard of care for elderly patients with MM. Previously, a bortezomib plus oral melphalan and prednisolone (VMP) regimen was demonstrated to exert synergistic anticancer effects (17,18), and this has become the current standard regimen for patients with MM (11).

The oral bioavailability of melphalan is known to be widely variable (19-21). For example, Sviland \emph{et al} (22) demonstrated that pretreatment of the patients with the histamine 2 (H\(_2\)) receptor blocker, cimetidine, reduced the oral bioavailability of melphalan by ~35%. This reduction is thought to stem from the poor absorption of melphalan (19), since its solubility is known to decrease under alkaline pH conditions (23,24). However, this pharmacokinetic interaction has not been conclusively demonstrated to be associated with any reduced clinical efficacy. Furthermore, there is no mention of any drug interactions between oral melphalan and gastric antisecretory drugs in the medical package insert in Japan.

The aim of the present study was to assess whether the clinical efficacy and toxicity of melphalan were influenced by the concomitant use of gastric antisecretory drugs in patients with MM receiving VMP therapy. The clinical significance of the interaction between melphalan and gastric antisecretory drugs was also discussed.

Correspondence to: Dr Kohji Takara, Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji, Hyogo 670-8524, Japan

E-mail: takara@gm.himeji-du.ac.jp

Key words: VMP, rabeprazole sodium, famotidine, drug interaction, multiple myeloma
Patients and methods

Ethics statement. The present study was reviewed and approved by the Institutional Review Boards of the Japan Community Health care Organization Kyoto Kuramaguchi Medical Center (Kyoto, Japan; IRB no.: 2015012602). Written patient consent was waived due to the retrospective and observational nature of the study.

Study population and design. A retrospective study was performed at the Japan Community Health care Organization Kyoto Kuramaguchi Medical Center (Kyoto, Japan). A total of 12 patients with MM who received VMP therapy between December 2011 and November 2014 were included. However, two patients from this cohort were excluded from the analysis, due to an inability to measure the level of M protein throughout the first cycle of treatment. The remaining 10 patients were divided into two groups: The concomitant (three patients) and control (seven patients) groups, according to the additional use of gastric antisecretory drugs, or the lack thereof. The VMP regimen consisted of bortezomib (1.3 mg/m²) administered on days 1, 8, 15 and 22, and oral melphalan (6 mg/m²) and prednisolone (40 mg/m²) administered on days 1-4 per one cycle (35 days).

Data collection and definitions. Two parameters were used as measures of clinical efficacy: (i) a reduction in the level of M protein; and (ii) the best response according to the International Myeloma Working Group criteria (25) throughout the course of treatment. The hematological and gastrointestinal (GI) toxicity of melphalan was assessed according to the Common Terminology Criteria for Adverse Events version 4.0 (26), using the highest grade available throughout the duration of the three-cycle treatment for the analysis.

Statistical analysis. The data are expressed as the mean ± standard deviation, or the median (range). Comparisons of the two groups were performed using the unpaired Student’s t-test (parametric) or the Mann-Whitney U test (non-parametric). Differences between observed and expected frequencies were evaluated using Fisher’s exact probability test. P<0.05 was considered to indicate a statistically significant difference.

Results

Characteristics of the patients. Table I shows the characteristics of the 10 patients enrolled in the present study. Seven patients were not co-administered gastric antisecretory drugs (control group), and three patients were co-administered gastric antisecretory drugs (two patients were administered rabeprazole sodium, one patient was administered famotidine) in the VMP regimen (concomitant group). Patient no. 1 was changed to the VMP regimen after having received oral melphalan and prednisolone therapy during cycle 1. No significant differences were observed in the characteristics of the patients between the control and concomitant groups.

Table II shows the doses of chemotherapeutic agents in the VMP regimen. The doses of melphalan were 4.6 and 5.5 mg/m² in the control and concomitant groups, respectively; the difference between the two doses was not statistically significant. Furthermore, the doses of other components used in the VMP regimen...
(bortezomib and prednisolone) revealed no statistically significant differences between the control and concomitant groups.

Clinical efficacy. The levels of M protein over the duration of the treatment period for the two groups are shown in Fig. 1. The levels of M protein in the control group markedly decreased, depending on the number of cycles; however, the levels in the concomitant group remained largely unchanged. The levels of M protein in cycles 2 and 3 were significantly higher in the concomitant group compared with the control group (P<0.01).

The other index of clinical efficacy, i.e. the best response in the three cycles, is summarized in Table III. All the patients in the control group were graded as having a partial response (PR) to the drug therapy, whereas all the patients in the concomitant group were graded as having stable disease (SD). The best response to the VMP regimen was significantly higher for the control group than for the concomitant group.

Hematological and GI toxicity. Table IV shows the grade and frequency of selected hematological and GI toxicities. Throughout each treatment cycle, the grade and frequency of leukopenia, anemia and thrombocytopenia were comparable in the two groups. Furthermore, no significant differences were observed in the white blood cell count, hemoglobin level, or the platelet count between the two groups (Fig. 2). Grade 1 GI toxicities were observed in the control group, manifesting as vomiting in one patient, and diarrhea and loss of appetite in two other patients. No GI toxicity was observed in the concomitant group.

Discussion

Limitations to the present study included its retrospective small sample size and a lack of plasma melphalan concentrations. However, the results in the present study are sufficient to call attention to the interaction between melphalan and gastric antisecretory drugs.

In the present study, three of the ten patients received gastric antisecretory drugs in addition to VMP therapy. Of the three patients in the concomitant group, two patients received rabeprazole sodium and one received famotidine. With the exception of the use of gastric antisecretory drugs, the control and the concomitant groups were comparable in terms of the characteristics of the patients (Table I) and the doses of chemotherapeutic agents in the VMP regimen (Table II). However, the decrease in the level of the M protein in treatment cycles 2 and 3 was significantly greater in the control group (Fig. 1), indicating a more favorable clinical response in that cohort. In addition, all the patients in the control group were graded as having a PR to the drug therapy, compared with the SD identified in the concomitant group (Table III). Taken together, these findings suggested that the clinical efficacy of the VMP regimen against MM decreases on co-administration of the gastric antisecretory drugs. As for bortezomib, the pharmacokinetics, efficacy and safety of bortezomib were not affected by co-administration of either the proton-pump inhibitor, omeprazole (27), or the H2 receptor blocker, lafutidine (28).

The hallmark adverse events of melphalan are known to be hematological and GI toxicities. The present study disclosed no significant difference in the analyses of hematological toxicity between the control and concomitant
groups (Fig. 2 and Table IV), in stark contrast with the clinical efficacy findings reported in the present study. These results are in agreement with previous reports, which cited no significant differences in hematological toxicity among patients receiving oral melphalan following cimetidine pretreatment (22). Therefore, in spite of the decreased bioavailability of melphalan in the concomitant group, the plasma concentrations were likely to have remained within a range in which myelosuppression would be predicted to occur. The observed differences in GI toxicity (Table IV) may be partly explained by the poorer solubility of melphalan tablets with increasing gastric pH.

Taken together, these results suggested that the interaction of the VMP regimen with gastric antisecretory drugs resulted in a marked decrease in the clinical efficacy of melphalan. As such, oral melphalan should not be co-administered with gastric antisecretory drugs, and this drug interaction should prominently feature in the medical package insert. The mechanism of the interaction between melphalan and gastric antisecretory drugs remains to be fully elucidated. For example, melphalan was reported to be unstable at alkaline pH, and the dissolution of melphalan tablets occurred more slowly at an increased gastric pH (23). Furthermore, Sviland et al (22) reported a 35.5% decrease in the oral bioavailability of melphalan in patients pretreated with cimetidine. Therefore, drugs that induce a potent and long-lasting inhibition of gastric acid secretion [a pharmacological hallmark of rabeprazole sodium (29,30) and famotidine] would predispose a patient to melphalan toxicity.

Evaluation of hematological toxicity adopted a high grade in the first three cycles, according to the Common Terminology Criteria for Adverse Events, version 4.0. Fisher’s exact probability test.

Table IV. Hematological and gastrointestinal toxicity.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Control (n=7)</th>
<th>Concomitant (n=3)</th>
<th>P-valuea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukopenia</td>
<td>Grade 1/2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Grade 3/4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Grade 1/2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Grade 3/4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Anemia</td>
<td>Grade 1/2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Grade 3/4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>Grade 1/2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Grade 3/4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Vomit</td>
<td>Grade 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>Grade 1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Appetite loss</td>
<td>Grade 1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Evaluation of hematological toxicity adopted a high grade in the first three cycles, according to the Common Terminology Criteria for Adverse Events, version 4.0. Fisher’s exact probability test.

Taken together, these results suggested that the interaction of the VMP regimen with gastric antisecretory drugs resulted in a marked decrease in the clinical efficacy of melphalan. As such, oral melphalan should not be co-administered with gastric antisecretory drugs, and this drug interaction should prominently feature in the medical package insert. The mechanism of the interaction between melphalan and gastric antisecretory drugs remains to be fully elucidated. For example, melphalan was reported to be unstable at alkaline pH, and the dissolution of melphalan tablets occurred more slowly at an increased gastric pH (23). Furthermore, Sviland et al (22) reported a 35.5% decrease in the oral bioavailability of melphalan in patients pretreated with cimetidine. Therefore, drugs that induce a potent and long-lasting inhibition of gastric acid secretion [a pharmacological hallmark of rabeprazole sodium (29,30) and famotidine] would predispose a patient to melphalan toxicity.

Taken together, these results suggested that the interaction of the VMP regimen with gastric antisecretory drugs resulted in a marked decrease in the clinical efficacy of melphalan. As such, oral melphalan should not be co-administered with gastric antisecretory drugs, and this drug interaction should prominently feature in the medical package insert. The mechanism of the interaction between melphalan and gastric antisecretory drugs remains to be fully elucidated. For example, melphalan was reported to be unstable at alkaline pH, and the dissolution of melphalan tablets occurred more slowly at an increased gastric pH (23). Furthermore, Sviland et al (22) reported a 35.5% decrease in the oral bioavailability of melphalan in patients pretreated with cimetidine. Therefore, drugs that induce a potent and long-lasting inhibition of gastric acid secretion [a pharmacological hallmark of rabeprazole sodium (29,30) and famotidine] would predispose a patient to melphalan toxicity.

Taken together, these results suggested that the interaction of the VMP regimen with gastric antisecretory drugs resulted in a marked decrease in the clinical efficacy of melphalan. As such, oral melphalan should not be co-administered with gastric antisecretory drugs, and this drug interaction should prominently feature in the medical package insert. The mechanism of the interaction between melphalan and gastric antisecretory drugs remains to be fully elucidated. For example, melphalan was reported to be unstable at alkaline pH, and the dissolution of melphalan tablets occurred more slowly at an increased gastric pH (23). Furthermore, Sviland et al (22) reported a 35.5% decrease in the oral bioavailability of melphalan in patients pretreated with cimetidine. Therefore, drugs that induce a potent and long-lasting inhibition of gastric acid secretion [a pharmacological hallmark of rabeprazole sodium (29,30) and famotidine] would predispose a patient to melphalan toxicity.

Evaluation of hematological toxicity adopted a high grade in the first three cycles, according to the Common Terminology Criteria for Adverse Events, version 4.0. Fisher’s exact probability test.

Taken together, these results suggested that the interaction of the VMP regimen with gastric antisecretory drugs resulted in a marked decrease in the clinical efficacy of melphalan. As such, oral melphalan should not be co-administered with gastric antisecretory drugs, and this drug interaction should prominently feature in the medical package insert. The mechanism of the interaction between melphalan and gastric antisecretory drugs remains to be fully elucidated. For example, melphalan was reported to be unstable at alkaline pH, and the dissolution of melphalan tablets occurred more slowly at an increased gastric pH (23). Furthermore, Sviland et al (22) reported a 35.5% decrease in the oral bioavailability of melphalan in patients pretreated with cimetidine. Therefore, drugs that induce a potent and long-lasting inhibition of gastric acid secretion [a pharmacological hallmark of rabeprazole sodium (29,30) and famotidine] would predispose a patient to melphalan toxicity.

Evaluation of hematological toxicity adopted a high grade in the first three cycles, according to the Common Terminology Criteria for Adverse Events, version 4.0. Fisher’s exact probability test.

Taken together, these results suggested that the interaction of the VMP regimen with gastric antisecretory drugs resulted in a marked decrease in the clinical efficacy of melphalan. As such, oral melphalan should not be co-administered with gastric antisecretory drugs, and this drug interaction should prominently feature in the medical package insert. The mechanism of the interaction between melphalan and gastric antisecretory drugs remains to be fully elucidated. For example, melphalan was reported to be unstable at alkaline pH, and the dissolution of melphalan tablets occurred more slowly at an increased gastric pH (23). Furthermore, Sviland et al (22) reported a 35.5% decrease in the oral bioavailability of melphalan in patients pretreated with cimetidine. Therefore, drugs that induce a potent and long-lasting inhibition of gastric acid secretion [a pharmacological hallmark of rabeprazole sodium (29,30) and famotidine] would predispose a patient to melphalan toxicity.

References

