Open Access

Definition of fields margins for the optimized 2D radiotherapy of prostate carcinoma

  • Authors:
    • Milly Buwenge
    • Mariangela Perrone
    • Giambattista Siepe
    • Ilaria Capocaccia
    • Aynalem Abraha Woldemariam
    • Tigeneh Wondemagegnhu
    • Kamal A.F.M. Uddin
    • Mostafa A. Sumon
    • Elena Galofaro
    • Gabriella Macchia
    • Francesco Deodato
    • Savino Cilla
    • Alessio G. Morganti
  • View Affiliations

  • Published online on: May 8, 2019     https://doi.org/10.3892/mco.2019.1855
  • Pages: 37-42
  • Copyright: © Buwenge et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Prostate cancer (PCa) is one of the most common malignancies in men both in western and developing countries. Radiotherapy (RT) is an important therapeutic option. New technologies (including 3D, intensity modulated RT, image‑guided RT and, volumetric modulated arc therapy) have been introduced in the last few decades with progressive improvement of clinical outcomes. However, in many developing countries, the only treatment option is the traditional two‑dimensional (2D) technique based on standard simulation. The guidelines for 2D field definition are still based on expert's opinions.  The aim of the present study was to propose new practical guidelines for 2D fields definition based on 3D simulation in PCa. A total of 20 patients were enrolled. Computed tomography‑simulation and pelvic magnetic resonance images were merged to define the prostate volumes. Clinical Target Volume (CTV) was defined using the European Organisation for Research and Treatment of Cancer guidelines in consideration of the four risk categories: Low, intermediate, and high risk with or without seminal vesicles involvement, respectively. Planning Target Volume (PTV) was defined by adding 10 mm to the CTV. For each category, two treatment plans were calculated using a cobalt source or 10 MV photons. Progressive optimization was achieved by evaluating 3D dose distribution. Finally, the optimal distances between field margins and radiological landmarks (bones and rectum with contrast medium) were defined. The results were reported in tabular form. Both field margins (PTV D98% >95%) needed to adequately irradiate all patients and to achieve a similar result in 95% of the enrolled patients are reported. Using a group of patients with PCa and based on a 3D planning analysis, we propose new practical guidelines for PCa 2D‑RT based on current criteria for risk category and CTV, and PTV definition.

References

1 

Mohler J, Bahnson RR, Boston B, Busby JE, D'Amico A, Eastham JA, Enke CA, George D, Horwitz EM, Huben RP, et al: NCCN clinical practice guidelines in oncology: Prostate cancer. J Natl Compr Canc Netw. 8:162–200. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Adebamowo CA and Akarolo-Anthony S: Cancer in Africa: Opportunities for collaborative research and training. Afr J Med Med Sci (38 Suppl 2). S5–S13. 2009.

3 

Barton MB, Frommer M and Shafiq J: Role of radiotherapy in cancer control in low-income and middle-income countries. Lancet Oncol. 7:584–595. 2006. View Article : Google Scholar : PubMed/NCBI

4 

Kigula Mugambe JB and Wegoye P: Pattern and experience with cancers treated with the Chinese GWGP80 cobalt unit at Mulago Hospital, Kampala. East Afr Med J. 77:523–525. 2000.PubMed/NCBI

5 

Page BR, Hudson AD, Brown DW, Shulman AC, Abdel-Wahab M, Fisher BJ and Patel S: Cobalt, linac, or other: What is the best solution for radiation therapy in developing countries? Int J Radiat Oncol Biol Phys. 89:476–480. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Zelefsky MJ, Valicenti RK, Hunt M and Perez CA: Low-risk prostate cancer. Perez and Brady's Principles and Practice of Radiation Oncology. Halperin EC, Perez CA, Brady LW, Wazer DE, Freeman C and Prosnitz LR: 5th. Lippincott Williams & Wilkins; pp. 1280–1311. 2007

7 

Hussey DH: Carcinoma of the prostate. Textbook of Radiotherapy. Fletcher GH: 3rd. Lea & Febiger; Philadelphia: pp. 894–914. 1980

8 

Pilepich MV, Prasad SC and Perez CA: Computed tomography in definitive radiotherapy of prostatic carcinoma, part 2: Definition of target volume. Int J Radiat Oncol Biol Phys. 8:235–239. 1982. View Article : Google Scholar : PubMed/NCBI

9 

Boehmer D, Maingon P, Poortmans P, Baron MH, Miralbell R, Remouchamps V, Scrase C, Bossi A and Bolla M; EORTC radiation oncology group, : Guidelines for primary radiotherapy of patients with prostate cancer. Radiother Oncol. 79:259–269. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Bentzen SM, Constine LS, Deasy JO, Eisbruch A, Jackson A, Marks LB, Ten Haken RK and Yorke ED: Quantitative analyses of normal tissue effects in the clinic (QUANTEC): An introduction to the scientific issues. Int J Radiat Oncol Biol Phys. 76 (3 Suppl):S3–S9. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Dearnaley DP, Hall E, Lawrence D, Huddart RA, Eeles R, Nutting CM, Gadd J, Warrington A, Bidmead M and Horwich A: Phase III pilot study of dose escalation using conformal radiotherapy in prostate cancer: PSA control and side effects. Br J Cancer. 92:488–498. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Khoo VS, Bedford JL, Webb S and Dearnaley DP: Class solutions for conformal external beam prostate radiotherapy. Int J Radiat Oncol Biol Phys. 55:1109–1120. 2003. View Article : Google Scholar : PubMed/NCBI

13 

Smith WL, Lewis C, Bauman G, Rodrigues G, D'Souza D, Ash R, Ho D, Venkatesan V, Downey D and Fenster A: Prostate volume contouring: A 3D analysis of segmentation using 3DTRUS, CT, and MR. Int J Radiat Oncol Biol Phys. 67:1238–1247. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Villeirs GM, Van Vaerenbergh K, Vakaet L, Bral S, Claus F, De Neve WJ, Verstraete KL and De Meerleer GO: Interobserver delineation variation using CT versus combined CT + MRI in intensity-modulated radiotherapy for prostate cancer. Strahlenther Onkol. 181:424–430. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Creak A, Hall E, Horwich A, Eeles R, Khoo V, Huddart R, Parker C, Griffin C, Bidmead M, Warrington J and Dearnaley D: Randomised pilot study of dose escalation using conformal radiotherapy in prostate cancer: Long-term follow-up. Br J Cancer. 109:651–657. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Bolla M, van Poppel H, Collette L, van Cangh P, Vekemans K, Da Pozzo L, de Reijke TM, Verbaeys A, Bosset JF, van Velthoven R, et al: Postoperative radiotherapy after radical prostatectomy: A randomised controlled trial (EORTC trial 22911). Lancet. 366:572–578. 2005. View Article : Google Scholar : PubMed/NCBI

17 

Swanson GP, Hussey MA, Tangen CM, Chin J, Messing E, Canby-Hagino E, Forman JD, Thompson IM and Crawford ED; SWOG 8794, : Predominant treatment failure in postprostatectomy patients is local: Analysis of patterns of treatment failure in SWOG 8794. J Clin Oncol. 25:2225–2229. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Wiegel T, Bottke D, Steiner U, Siegmann A, Golz R, Störkel S, Willich N, Semjonow A, Souchon R, Stöckle M, et al: Phase III postoperative adjuvant radiotherapy after radical prostatectomy compared with radical prostatectomy alone in pT3 prostate cancer with postoperative undetectable prostate-specific antigen: ARO 96-02/AUO AP 09/95. J Clin Oncol. 27:2924–2930. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Pilepich MV, Winter K, John MJ, Mesic JB, Sause W, Rubin P, Lawton C, Machtay M and Grignon D: Phase III radiation therapy oncology group (RTOG) trial 86-10 of androgen deprivation adjuvant to definitive radiotherapy in locally advanced carcinoma of the prostate. Int J Radiat Oncol Biol Phys. 50:1243–1252. 2001. View Article : Google Scholar : PubMed/NCBI

20 

Pilepich MV, Winter K, Lawton CA, Krisch RE, Wolkov HB, Movsas B, Hug EB, Asbell SO and Grignon D: Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma-long-term results of phase III RTOG 85-31. Int J Radiat Oncol Biol Phys. 61:1285–1290. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Bolla M, Van Tienhoven G, Warde P, Dubois JB, Mirimanoff RO, Storme G, Bernier J, Kuten A, Sternberg C, Billiet I, et al: External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol. 11:1066–1073. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Denham JW, Steigler A, Lamb DS, Joseph D, Turner S, Matthews J, Atkinson C, North J, Christie D, Spry NA, et al: Short-term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial. Lancet Oncol. 12:451–459. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Nguyen PL, Chen MH, Beard CJ, Suh WW, Renshaw AA, Loffredo M, McMahon E, Kantoff PW and D'Amico AV: Radiation with or without 6 months of androgen suppression therapy in intermediate- and high-risk clinically localized prostate cancer: A postrandomization analysis by risk group. Int J Radiat Oncol Biol Phys. 77:1046–1052. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Shipley WU, Verhey LJ, Munzenrider JE, Suit HD, Urie MM, McManus PL, Young RH, Shipley JW, Zietman AL, Biggs PJ, et al: Advanced prostate cancer: The results of a randomized comparative trial of high dose irradiation boosting with conformal protons compared with conventional dose irradiation using photons alone. Int J Radiat Oncol Biol Phys. 32:3–12. 1995. View Article : Google Scholar : PubMed/NCBI

25 

Pollack A, Zagars GK, Starkschall G, Antolak JA, Lee JJ, Huang E, von Eschenbach AC, Kuban DA and Rosen I: Prostate cancer radiation dose response: Results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys. 53:1097–1105. 2002. View Article : Google Scholar : PubMed/NCBI

26 

Zietman AL, DeSilvio ML, Slater JD, Rossi CJ Jr, Miller DW, Adams JA and Shipley WU: Comparison of conventional-dose vs. high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: A randomized controlled trial. JAMA. 294:1233–1239. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Sathya JR, Davis IR, Julian JA, Guo Q, Daya D, Dayes IS, Lukka HR and Levine M: Randomized trial comparing iridium implant plus external-beam radiation therapy with external-beam radiation therapy alone in node-negative locally advanced cancer of the prostate. J Clin Oncol. 23:1192–1199. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Peeters ST, Heemsbergen WD, Koper PC, van Putten WL, Slot A, Dielwart MF, Bonfrer JM, Incrocci L and Lebesque JV: Dose-response in radiotherapy for localized prostate cancer: Results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol. 24:1990–1996. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Viani GA, Stefano EJ and Afonso SL: Higher-than-conventional radiation doses in localized prostate cancer treatment: A meta-analysis of randomized, controlled trials. Int J Radiat Oncol Biol Phys. 74:1405–1418. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Roach M III, Pickett B, Holland J, Zapotowski KA, Marsh DL and Tatera BS: The role of the urethrogram during simulation for localized prostate cancer. Int J Radiat Oncol Biol Phys. 25:299–307. 1993. View Article : Google Scholar : PubMed/NCBI

31 

Liu YM, Ling S, Langen KM, Shinohara K, Weinberg V, Pouliot J and Roach M III: Prostate movement during simulation resulting from retrograde urethrogram compared with ‘natural’ prostate movement. Int J Radiat Oncol Biol Phys. 60:470–475. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Lawton CA, Michalski J, El-Naqa I, Buyyounouski MK, Lee WR, Menard C, O'Meara E, Rosenthal SA, Ritter M and Seider M: RTOG GU Radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int J Radiat Oncol Biol Phys. 74:383–387. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Buwenge M, Marinelli A, Deodato F, Macchia G, Wondemagegnhu T, Salah T, Cammelli S, Uddin AFMK, Sumon MA, Donati CM, et al: Definition of fields margins for palliative radiotherapy of pancreatic carcinoma. Mol Clin Oncol. 8:715–718. 2018.PubMed/NCBI

34 

Morganti AG, Marinelli A, Buwenge M, Macchia G, Deodato F, Massaccesi M, Kigula-Mugambe J, Wondemagegnhu T, Dawotola D, Caravatta L, et al: Palliative two-dimensional radiotherapy of pancreatic carcinoma: A feasibility study. Tumori. 99:488–492. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Buwenge M, Cilla S, Cammelli S, Macchia G, Arcelli A, Farina E, Frakulli R, Panni V, Wondemagegnhu T, Uddin AFMK, et al: Feasibility of 2D-conformal radiotherapy for pancreatic carcinoma. Oncol Lett. 16:5939–5945. 2018.PubMed/NCBI

Related Articles

Journal Cover

July 2019
Volume 11 Issue 1

Print ISSN: 2049-9450
Online ISSN:2049-9469

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Buwenge, M., Perrone, M., Siepe, G., Capocaccia, I., Woldemariam, A.A., Wondemagegnhu, T. ... Morganti, A.G. (2019). Definition of fields margins for the optimized 2D radiotherapy of prostate carcinoma . Molecular and Clinical Oncology, 11, 37-42. https://doi.org/10.3892/mco.2019.1855
MLA
Buwenge, M., Perrone, M., Siepe, G., Capocaccia, I., Woldemariam, A. A., Wondemagegnhu, T., Uddin, K. A., Sumon, M. A., Galofaro, E., Macchia, G., Deodato, F., Cilla, S., Morganti, A. G."Definition of fields margins for the optimized 2D radiotherapy of prostate carcinoma ". Molecular and Clinical Oncology 11.1 (2019): 37-42.
Chicago
Buwenge, M., Perrone, M., Siepe, G., Capocaccia, I., Woldemariam, A. A., Wondemagegnhu, T., Uddin, K. A., Sumon, M. A., Galofaro, E., Macchia, G., Deodato, F., Cilla, S., Morganti, A. G."Definition of fields margins for the optimized 2D radiotherapy of prostate carcinoma ". Molecular and Clinical Oncology 11, no. 1 (2019): 37-42. https://doi.org/10.3892/mco.2019.1855