Secreted amphiregulin promotes vincristine resistance in oral squamous cell carcinoma

  • Authors:
    • Ming‑Ju Hsieh
    • Yin‑Hong Chen
    • I‑Neng Lee
    • Cheng Huang
    • Yu‑Ju Ku
    • Jui‑Chieh Chen
  • View Affiliations

  • Published online on: August 30, 2019     https://doi.org/10.3892/ijo.2019.4866
  • Pages: 949-959
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. Despite advances in surgery, radiotherapy and chemotherapy, the overall 5‑year survival rate of patients with OSCC has not significantly improved. In addition, the prognosis of patients with advanced‑stage OSCC remains poor. Therefore, it is necessary to develop novel therapeutic modalities. Vincristine (VCR), a naturally occurring vinca alkaloid, is a classical microtubule‑destabilizing agent and is widely used in the treatment of a number of cancers. Despite the proven antitumor benefits of VCR treatment, one of the major reasons for the failure of treatment is drug resistance. Changes in the tumor microenvironment are responsible for cross‑talk between cells, which may facilitate drug resistance in cancers; secreted proteins may promote communication between cancer cells to induce the development of resistance. To identify the secreted proteins involved in VCR resistance, conditioned media was obtained, and an antibody array was conducted to screen a comprehensive secretion profile between VCR‑resistant (SAS‑VCR) and parental (SAS) OSCC cell lines. The results showed that amphiregulin (AREG) was highly expressed and secreted in SAS‑VCR cells. Pretreatment with exogenous recombinant AREG markedly increased drug resistance against VCR in OSCC cells, as assessed by an MTT assay. Colony formation, MTT and western blot assays were performed to investigate the effects of AREG knockdown on VCR sensitivity. The results indicated that AREG expression can regulate VCR resistance in OSCC cells; overexpression of AREG increased VCR resistance in parental cells, whereas AREG knockdown decreased the VCR resistance of resistant cells. In addition, it was also demonstrated that the glycogen synthase kinase‑3β pathway may be involved in AREG‑induced VCR resistance. These findings may provide rationale to combine VCR with blockade of AREG‑related pathways for the effective treatment of OSCC.

References

1 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Curado MP and Hashibe M: Recent changes in the epidemiology of head and neck cancer. Curr Opin Oncol. 21:194–200. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Scully C and Bagan J: Oral squamous cell carcinoma overview. Oral Oncol. 45:301–308. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Schwam ZG and Judson BL: Improved prognosis for patients with oral cavity squamous cell carcinoma: Analysis of the National Cancer Database 1998-2006. Oral Oncol. 52:45–51. 2016. View Article : Google Scholar

5 

Dumontet C and Jordan MA: Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat Rev Drug Discov. 9:790–803. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Silverman JA, Reynolds L and Deitcher SR: Pharmacokinetics and pharmacodynamics of vincristine sulfate liposome injection (VSLI) in adults with acute lymphoblastic leukemia. J Clin Pharmacol. 53:1139–1145. 2013.PubMed/NCBI

7 

Yan Z, Zhu ZL, Qian ZZ, Hu G, Wang HQ, Liu WH and Cheng G: Pharmacokinetic characteristics of vincristine sulfate liposomes in patients with advanced solid tumors. Acta Pharmacol Sin. 33:852–858. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Olasz L, Orsi E, Marko T and Szalma J: Induction chemotherapy response and recurrence rates in correlation with N0 or N+ stage in oral squamous cell cancer (OSCC). Cancer Metastasis Rev. 29:607–611. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Villanueva J and Herlyn M: Melanoma and the tumor microenvi-ronment. Curr Oncol Rep. 10:439–446. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Chen JC, Lee IN, Huang C, Wu YP, Chung CY, Lee MH, Lin MH and Yang JT: Valproic acid-induced amphiregulin secretion confers resistance to temozolomide treatment in human glioma cells. BMC Cancer. 19:7562019. View Article : Google Scholar : PubMed/NCBI

11 

Milman N, Ginini L and Gil Z: Exosomes and their role in tumorigenesis and anticancer drug resistance. Drug Resist Updat. 45:1–12. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Siveen KS, Raza A, Ahmed EI, Khan AQ, Prabhu KS, Kuttikrishnan S, Mateo JM, Zayed H, Rasul K, Azizi F, et al: The role of extracellular vesicles as modulators of the tumor microenvironment, metastasis and drug resistance in colorectal cancer. Cancers (Basel). 11. pii: E746. 2019, View Article : Google Scholar

13 

Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, et al: Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature. 487:505–509. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, et al: Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 487:500–504. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, Manova-Todorova K, Leversha M, Hogg N, Seshan VE, et al: A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell. 150:165–178. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Berasain C and Avila MA: Amphiregulin. Semin Cell Dev Biol. 28:31–41. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Willmarth NE and Ethier SP: Autocrine and juxtacrine effects of amphiregulin on the proliferative, invasive, and migratory properties of normal and neoplastic human mammary epithelial cells. J Biol Chem. 281:37728–37737. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Berasain C, Castillo J, Perugorria MJ, Prieto J and Avila MA: Amphiregulin: A new growth factor in hepatocarcinogenesis. Cancer Lett. 254:30–41. 2007. View Article : Google Scholar : PubMed/NCBI

19 

Yotsumoto F, Fukami T, Yagi H, Funakoshi A, Yoshizato T, Kuroki M and Miyamoto S: Amphiregulin regulates the activation of ERK and Akt through epidermal growth factor receptor and HER3 signals involved in the progression of pancreatic cancer. Cancer Sci. 101:2351–2360. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Kuramochi H, Nakajima G, Kaneko Y, Nakamura A, Inoue Y, Yamamoto M and Hayashi K: Amphiregulin and Epiregulin mRNA expression in primary colorectal cancer and corresponding liver metastases. BMC Cancer. 12:882012. View Article : Google Scholar : PubMed/NCBI

21 

Chen JC, Huang C, Lee IN, Wu YP and Tang CH: Amphiregulin enhances cell migration and resistance to doxorubicin in chon-drosarcoma cells through the MAPK pathway. Mol Carcinog. 57:1816–1824. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Tokunaga S, Nagano T, Kobayashi K, Katsurada M, Nakata K, Yamamoto M, Tachihara M, Kamiryo H, Yokozaki H and Nishimura Y: Amphiregulin as a novel resistance factor for amru-bicin in lung cancer cells. Anticancer Res. 37:2225–2231. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Haab BB: Antibody arrays in cancer research. Mol Cell Proteomics. 4:377–383. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Tsai ST, Yang KY, Jin YT, Lin YC, Chang MT and Wu LW: Amphiregulin as a tumor promoter for oral squamous cell carcinoma: Involvement of cyclooxygenase 2. Oral Oncol. 42:381–390. 2006. View Article : Google Scholar

25 

Zhang J, Wang Y, Chen X, Zhou Y, Jiang F, Chen J, Wang L and Zhang WF: MiR-34a suppresses amphiregulin and tumor metastatic potential of head and neck squamous cell carcinoma (HNSCC). Oncotarget. 6:7454–7469. 2015.PubMed/NCBI

26 

Gao J, Ulekleiv CH and Halstensen TS: Epidermal growth factor (EGF) receptor-ligand based molecular staging predicts prognosis in head and neck squamous cell carcinoma partly due to deregulated EGF-induced amphiregulin expression. J Exp Clin Cancer Res. 35:1512016. View Article : Google Scholar

27 

Wang S, Zhang Y, Wang Y, Ye P, Li J, Li H, Ding Q and Xia J: Amphiregulin confers regulatory T cell suppressive function and tumor invasion via the EGFR/GSK-3β/Foxp3 Axis. J Biol Chem. 291:21085–21095. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Mishra R: Glycogen synthase kinase 3 beta: Can it be a target for oral cancer. Mol Cancer. 9:1442010. View Article : Google Scholar : PubMed/NCBI

29 

Addison CL, Ding K, Zhao H, Le Maître A, Goss GD, Seymour L, Tsao MS, Shepherd FA and Bradbury PA: Plasma transforming growth factor alpha and amphiregulin protein levels in NCIC Clinical Trials Group BR.21. J Clin Oncol. 28:5247–5256. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Hsu YL, Huang MS, Cheng DE, Hung JY, Yang CJ, Chou SH and Kuo PL: Lung tumor-associated dendritic cell-derived amphireg-ulin increased cancer progression. J Immunol. 187:1733–1744. 2011. View Article : Google Scholar : PubMed/NCBI

31 

McBryan J, Howlin J, Napoletano S and Martin F: Amphiregulin: Role in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia. 13:159–169. 2008. View Article : Google Scholar : PubMed/NCBI

32 

D'Antonio A, Losito S, Pignata S, Grassi M, Perrone F, De Luca A, Tambaro R, Bianco C, Gullick WJ, Johnson GR, et al: Transforming growth factor alpha, amphiregulin and cripto-1 are frequently expressed in advanced human ovarian carcinomas. Int J Oncol. 21:941–948. 2002.PubMed/NCBI

33 

Freimann S, Ben-Ami I, Hirsh L, Dantes A, Halperin R and Amsterdam A: Drug development for ovarian hyper-stimulation and anti-cancer treatment: Blocking of gonadotropin signaling for epiregulin and amphiregulin biosynthesis. Biochem Pharmacol. 68:989–996. 2004. View Article : Google Scholar : PubMed/NCBI

34 

Castillo J, Erroba E, Perugorria MJ, Santamaría M, Lee DC, Prieto J, Avila MA and Berasain C: Amphiregulin contributes to the transformed phenotype of human hepatocellular carcinoma cells. Cancer Res. 66:6129–6138. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Ebert M, Yokoyama M, Kobrin MS, Friess H, Lopez ME, Büchler MW, Johnson GR and Korc M: Induction and expression of amphiregulin in human pancreatic cancer. Cancer Res. 54:3959–3962. 1994.PubMed/NCBI

36 

Yamada M, Ichikawa Y, Yamagishi S, Momiyama N, Ota M, Fujii S, Tanaka K, Togo S, Ohki S and Shimada H: Amphiregulin is a promising prognostic marker for liver metastases of colorectal cancer. Clin Cancer Res. 14:2351–2356. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Gidding CE, Kellie SJ, Kamps WA and de Graaf SS: Vincristine revisited. Crit Rev Oncol Hematol. 29:267–287. 1999. View Article : Google Scholar : PubMed/NCBI

38 

Corbett R, Pinkerton R, Pritchard J, Meller S, Lewis I, Kingston J and McElwain T: Pilot study of high-dose vincristine, etoposide, carboplatin and melphalan with autologous bone marrow rescue in advanced neuroblastoma. Eur J Cancer. 28A:1324–1328. 1992. View Article : Google Scholar : PubMed/NCBI

39 

Gordon SJ, Pearson AD, Reid MM and Craft AW: Toxicity of single-day high-dose vincristine, melphalan, etoposide and carboplatin consolidation with autologous bone marrow rescue in advanced neuroblastoma. Eur J Cancer. 28A:1319–1323. 1992. View Article : Google Scholar : PubMed/NCBI

40 

Xi GM, Sun B, Jiang HH, Kong F, Yuan HQ and Lou HX: Bisbibenzyl derivatives sensitize vincristine-resistant KB/VCR cells to chemotherapeutic agents by retarding P-gp activity. Bioorg Med Chem. 18:6725–6733. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Yan YX, Li WZ, Huang YQ and Liao WX: The COX-2 inhibitor Celecoxib enhances the sensitivity of KB/VCR oral cancer cell lines to Vincristine by down-regulating P-glycoprotein expression and function. Prostaglandins Other Lipid Mediat. 97:29–35. 2012. View Article : Google Scholar

42 

Yuan Z, Wang H, Hu Z, Huang Y, Yao F, Sun S and Wu B: Quercetin inhibits proliferation and drug resistance in KB/VCR oral cancer cells and enhances its sensitivity to vincristine. Nutr Cancer. 67:126–136. 2015. View Article : Google Scholar

43 

Canto LMD, Cury SS, Barros-Filho MC, Kupper BEC, Begnami MDFS, Scapulatempo-Neto C, Carvalho RF, Marchi FA, Olsen DA, Madsen JS, et al: Locally advanced rectal cancer transcriptomic-based secretome analysis reveals novel biomarkers useful to identify patients according to neoadjuvant chemoradiotherapy response. Sci Rep. 9:87022019. View Article : Google Scholar : PubMed/NCBI

44 

Lin M, Zhou C, He S, Yu H, Guo T, Ye J, Feng X and Bian X: The research advances of exosomes in esophageal cancer. Biomark Med. 13:685–695. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Osborne DG, Domenico J, Luo Y, Reid AL, Amato C, Zhai Z, Gao D, Ziman M, Dinarello CA, Robinson WA and Fujita M: Interleukin-37 is highly expressed in regulatory T cells of melanoma patients and enhanced by melanoma cell secretome. Mol Carcinog. 58:1670–1679. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Obenauf AC, Zou Y, Ji AL, Vanharanta S, Shu W, Shi H, Kong X, Bosenberg MC, Wiesner T, Rosen N, et al: Therapy-induced tumour secretomes promote resistance and tumour progression. Nature. 520:368–372. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Amrutkar M, Aasrum M, Verbeke CS and Gladhaug IP: Secretion of fibronectin by human pancreatic stellate cells promotes chemoresistance to gemcitabine in pancreatic cancer cells. BMC Cancer. 19:5962019. View Article : Google Scholar : PubMed/NCBI

48 

Kulasingam V and Diamandis EP: Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol. 5:588–599. 2008. View Article : Google Scholar : PubMed/NCBI

49 

May M: From cells, secrets of the secretome leak out. Nat Med. 15:8282009. View Article : Google Scholar : PubMed/NCBI

50 

Wang X, Masri S, Phung S and Chen S: The role of amphiregulin in exemestane-resistant breast cancer cells: Evidence of an auto-crine loop. Cancer Res. 68:2259–2265. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Chen JC, Chen YJ, Lin CY, Fong YC, Hsu CJ, Tsai CH, Su JL and Tang CH: Amphiregulin enhances alpha6beta1 integrin expression and cell motility in human chondrosarcoma cells through Ras/Raf/MEK/ERK/AP-1 pathway. Oncotarget. 6:11434–11446. 2015.PubMed/NCBI

52 

Kakiuchi S, Daigo Y, Ishikawa N, Furukawa C, Tsunoda T, Yano S, Nakagawa K, Tsuruo T, Kohno N, Fukuoka M, et al: Prediction of sensitivity of advanced non-small cell lung cancers to gefitinib (Iressa, ZD1839). Hum Mol Genet. 13:3029–3043. 2004. View Article : Google Scholar : PubMed/NCBI

53 

Lorente M, Carracedo A, Torres S, Natali F, Egia A, Hernández-Tiedra S, Salazar M, Blázquez C, Guzmán M and Velasco G: Amphiregulin is a factor for resistance of glioma cells to cannabinoid-induced apoptosis. Glia. 57:1374–1385. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Ishikawa N, Daigo Y, Takano A, Taniwaki M, Kato T, Hayama S, Murakami H, Takeshima Y, Inai K, Nishimura H, et al: Increases of amphiregulin and transforming growth factor-alpha in serum as predictors of poor response to gefitinib among patients with advanced non-small cell lung cancers. Cancer Res. 65:9176–9184. 2005. View Article : Google Scholar : PubMed/NCBI

55 

Kao SY and Lim E: An overview of detection and screening of oral cancer in Taiwan. Chin J Dent Res. 18:7–12. 2015.PubMed/NCBI

56 

Chiang WF, Liu SY, Yen CY, Lin CN, Chen YC, Lin SC and Chang KW: Association of epidermal growth factor receptor (EGFR) gene copy number amplification with neck lymph node metastasis in areca-associated oral carcinomas. Oral Oncol. 44:270–276. 2008. View Article : Google Scholar

57 

Huang SF, Chuang WY, Chen IH, Liao CT, Wang HM and Hsieh LL: EGFR protein overexpression and mutation in areca quid-associated oral cavity squamous cell carcinoma in Taiwan. Head Neck. 31:1068–1077. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Huang SF, Chien HT, Cheng SD, Chuang WY, Liao CT and Wang HM: EGFR copy number alterations in primary tumors, metastatic lymph nodes, and recurrent and multiple primary tumors in oral cavity squamous cell carcinoma. BMC Cancer. 17:5922017. View Article : Google Scholar : PubMed/NCBI

59 

Huang SF, Chien HT, Chuang WY, Lai CH, Cheng SD, Liao CT and Wang HM: Epidermal growth factor receptor intron-1 CA repeat polymorphism on protein expression and clinical outcome in Taiwanese oral squamous cell carcinoma. Sci Rep. 7:49632017. View Article : Google Scholar : PubMed/NCBI

60 

Rubin Grandis J, Melhem MF, Gooding WE, Day R, Holst VA, Wagener MM, Drenning SD and Tweardy DJ: Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst. 90:824–832. 1998. View Article : Google Scholar : PubMed/NCBI

61 

Harding J and Burtness B: Cetuximab: An epidermal growth factor receptor chemeric human-murine monoclonal antibody. Drugs Today (Barc). 41:107–127. 2005. View Article : Google Scholar

62 

Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, et al: Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 354:567–578. 2006. View Article : Google Scholar : PubMed/NCBI

63 

Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, Erfan J, Zabolotnyy D, Kienzer HR, Cupissol D, et al: Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 359:1116–1127. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Doble BW and Woodgett JR: GSK-3: Tricks of the trade for a multi-tasking kinase. J Cell Sci. 116:1175–1186. 2003. View Article : Google Scholar : PubMed/NCBI

65 

Luo J: Glycogen synthase kinase 3beta (GSK3beta) in tumorigen-esis and cancer chemotherapy. Cancer Lett. 273:194–200. 2009. View Article : Google Scholar

66 

Domoto T, Pyko IV, Furuta T, Miyashita K, Uehara M, Shimasaki T, Nakada M and Minamoto T: Glycogen synthase kinase-3β is a pivotal mediator of cancer invasion and resistance to therapy. Cancer Sci. 107:1363–1372. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Maqbool M and Hoda N: GSK3 inhibitors in the therapeutic development of diabetes, cancer and neurodegeneration: Past, present and future. Curr Pharm Des. 23:4332–4350. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Walz A, Ugolkov A, Chandra S, Kozikowski A, Carneiro BA, O'Halloran TV, Giles FJ, Billadeau DD and Mazar AP: Molecular pathways: Revisiting glycogen synthase kinase-3β as a target for the treatment of cancer. Clin Cancer Res. 23:1891–1897. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Pramanik KK, Nagini S, Singh AK, Mishra P, Kashyap T, Nath N, Alam M, Rana A and Mishra R: Glycogen synthase kinase-3β mediated regulation of matrix metalloproteinase-9 and its involvement in oral squamous cell carcinoma progression and invasion. Cell Oncol (Dordr). 41:47–60. 2018. View Article : Google Scholar

70 

Matsuo FS, Andrade MF, Loyola AM, da Silva SJ, Silva MJB, Cardoso SV and de Faria PR: Pathologic significance of AKT, mTOR, and GSK3β proteins in oral squamous cell carcinoma-affected patients. Virchows Arch. 472:983–997. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Huang GL, Shen DY, Cai CF, Zhang QY, Ren HY and Chen QX: β-escin reverses multidrug resistance through inhibition of the GSK3β/β-catenin pathway in cholangiocarcinoma. World J Gastroenterol. 21:1148–1157. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Ugolkov A, Gaisina I, Zhang JS, Billadeau DD, White Kozikowski A, Jain S, Cristofanilli M, Giles F, O'Halloran T, et al: GSK-3 inhibition overcomes chemoresistance in human breast cancer. Cancer Lett. 380:384–392. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Ugolkov A, Qiang W, Bondarenko G, Procissi D, Gaisina I, James CD, Chandler J, Kozikowski A, Gunosewoyo H, O'Halloran T, et al: Combination treatment with the GSK-3 inhibitor 9-ING-41 and CCNU cures orthotopic chemoresistant glioblastoma in patient-derived xenograft models. Transl Oncol. 10:669–678. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 55 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Hsieh, M., Chen, Y., Lee, I., Huang, C., Ku, Y., & Chen, J. (2019). Secreted amphiregulin promotes vincristine resistance in oral squamous cell carcinoma. International Journal of Oncology, 55, 949-959. https://doi.org/10.3892/ijo.2019.4866
MLA
Hsieh, M., Chen, Y., Lee, I., Huang, C., Ku, Y., Chen, J."Secreted amphiregulin promotes vincristine resistance in oral squamous cell carcinoma". International Journal of Oncology 55.4 (2019): 949-959.
Chicago
Hsieh, M., Chen, Y., Lee, I., Huang, C., Ku, Y., Chen, J."Secreted amphiregulin promotes vincristine resistance in oral squamous cell carcinoma". International Journal of Oncology 55, no. 4 (2019): 949-959. https://doi.org/10.3892/ijo.2019.4866