TGFBR2‑dependent alterations of microRNA profiles in extracellular vesicles and parental colorectal cancer cells

  • Authors:
    • Fabia Fricke
    • Veronika Mussack
    • Dominik Buschmann
    • Ingrid Hausser
    • Michael W. Pfaffl
    • Jürgen Kopitz
    • Johannes Gebert
  • View Affiliations

  • Published online on: August 19, 2019     https://doi.org/10.3892/ijo.2019.4859
  • Pages: 925-937
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

In colorectal cancer (CRC) with microsatellite instability (MSI), >90% of cases are affected by inactivating frameshift mutations of transforming growth factor β receptor type 2 (TGFBR2). TGFBR2 deficiency is considered to drive MSI tumor progression by abrogating downstream TGF‑β signaling. This pathway can alter the expression of coding and non‑coding RNAs, including microRNAs (miRNAs), which are also present in extracellular vesicles (EVs) as post‑transcriptional modulators of gene expression. In our previous study, it was shown that TGFBR2 deficiency alters the protein composition and function of EVs in MSI tumors. To investigate whether mutant TGFBR2 may also affect the miRNA cargo of EVs, the present study characterized miRNAs in EVs and their parental MSI tumor cells that differed only in TGFBR2 expression status. The HCT116‑TGFBR2 MSI cell line model enables the doxycycline (dox)‑inducible reconstituted expression of TGFBR2 in an isogenic background (‑dox, TGFBR2 deficient; +dox, TGFBR2 proficient). Small RNA sequencing of cellular and EV miRNAs showed that the majority of the miRNAs (263/471; 56%) were shared between MSI tumor cells and their EVs. Exploratory data analysis revealed the TGBFR2‑dependent cluster separation of miRNA profiles in EVs and MSI tumor cells. This segregation appeared to result from two subsets of miRNAs, the expression of which were regulated in a TGFBR2‑dependent manner (EVs: n=10; MSI cells: n=15). In the EV subset, 7/10 miRNAs were downregulated and 3/10 were upregulated by TGFBR2 deficiency. In the cellular subset, 13/15 miRNAs were downregulated and 2/15 miRNAs were upregulated in the TGFBR2‑deficient cells. The present study emphasizes the general overlap of miRNA profiles in MSI tumor cells and their EVs, but also highlights the impact of a single tumor driver mutation on the expression of individual miRNAs, as exemplified by the downregulation of miR‑381‑3p in TGFBR2‑deficient MSI tumor cells and their secreted EVs.

References

1 

Boland CR and Goel A: Microsatellite instability in colorectal cancer. Gastroenterology. 138:2073–2087.e3. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Woerner SM, Benner A, Sutter C, Sutter C, Schiller M, Yuan YP, Keller G, Bork P, Doeberitz Mv and Gebert JF: Pathogenesis of DNA repair-deficient cancers: A statistical meta-analysis of putative Real Common Target genes. Oncogene. 22:222622352003. View Article : Google Scholar : PubMed/NCBI

3 

Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B, et al: Inactivation of the type II TGF beta receptor in colon cancer cells with microsatellite instability. Science. 268:1336–1338. 1995. View Article : Google Scholar : PubMed/NCBI

4 

Massagué J: TGFβ signalling in context. Nat Rev Mol Cell Biol. 13:616–630. 2012. View Article : Google Scholar

5 

Butz H, Rácz K, Hunyady L and Patócs A: Crosstalk between TGF β signaling and the microRNA machinery. Trends Pharmacol Sci. 33:382–393. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Gebert LFR and MacRae IJ: Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 20:21–37. 2019. View Article : Google Scholar :

8 

Friedman RC, Farh KK, Burge CB and Bartel DP: Most mamma lian mRNAs are conserved targets of microRNAs. Genome Res. 19:92–105. 2009. View Article : Google Scholar :

9 

Zhang J, Li S, Li L, Li M, Guo C, Yao J and Mi S: Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 13:17–24. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Cantini L, Isella C, Petti C, Picco G, Chiola S, Ficarra E, Caselle M and Medico E: MicroRNA mRNA interactions under lying colorectal cancer molecular subtypes. Nat Commun. 6:88782015. View Article : Google Scholar

11 

van Niel G, D'Angelo G and Raposo G: Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 19:213–228. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Bellingham SA, Shambrook M and Hill AF: Quantitative Analysis of Exosomal miRNA via qPCR and Digital PCR. Methods Mol Biol. 1545:55–70. 2017. View Article : Google Scholar

13 

Mathieu M, Martin-Jaular L, Lavieu G and Théry C: Specificities of secretion and uptake of exosomes and other extracellular vesi cles for cell to cell communication. Nat Cell Biol. 21:9–17. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Fricke F, Lee J, Michalak M, Warnken U, Hausser I, Suarez Carmona M, Halama N, Schnölzer M, Kopitz J and Gebert J: TGFBR2 dependent alterations of exosomal cargo and functions in DNA mismatch repair-deficient HCT116 colorectal cancer cells. J Cell Commun Signal. 15:142017. View Article : Google Scholar

15 

Lee J, Ballikaya S, Schönig K, Ball CR, Glimm H, Kopitz J and Gebert J: Transforming growth factor beta receptor 2 (TGFBR2) changes sialylation in the microsatellite unstable (MSI) Colorectal cancer cell line HCT116. PLoS One. 8:e570742013. View Article : Google Scholar : PubMed/NCBI

16 

Welman A, Barraclough J and Dive C: Generation of cells expressing improved doxycycline regulated reverse transcrip tional transactivator rtTA2S-M2. Nat Protoc. 1:803–811. 2006. View Article : Google Scholar

17 

Andrews S: FastQC: A quality control tool for high throughput sequence data. Bioinformatics Babraham. http://www.bioinformatics.babraham.ac.uk/projects/fastqcurisimplehttp://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 18 Dec, 2018.

18 

Kong Y: Btrim: A fast, lightweight adapter and quality trim ming program for next-generation sequencing technologies. Genomics. 98:152–153. 2011. View Article : Google Scholar : PubMed/NCBI

19 

The RNAcentral Consortium; Petrov AI, Kay SJE, Kalvari I, Howe KL, Gray KA, Bruford EA, Kersey PJ, Cochrane G, Finn RD, et al: A comprehensive database of non coding RNA sequences. Nucleic Acids Res. 45:D28–D134. 2017.

20 

Kozomara A and Griffiths-Jones S: miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42:68–73. 2014. View Article : Google Scholar

21 

Langmead B, Trapnell C, Pop M and Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10:R252009. View Article : Google Scholar : PubMed/NCBI

22 

Love MI, Huber W and Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI

23 

Benjamini Y and Hochberg Y: Controlling the False discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 57:289–300. 1995.

24 

Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S and Xia J: miRNet dissecting miRNA-target interactions and functional associations through network based visual analysis. Nucleic Acids Res. 44:W135–W141. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, Jassal B, Jupe S, Korninger F, McKay S, et al: The Reactome pathway Knowledgebase. Nucleic Acids Res. 44:D481–D487. 2016. View Article : Google Scholar :

26 

Pfaffl MW: A new mathematical model for relative quantification in real time RT PCR. Nucleic Acids Res. 29:e452001. View Article : Google Scholar

27 

Livak KJ and Schmittgen TD: Analysis of relative gene expres sion data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

28 

Andersen CL, Jensen JL and Ørntoft TF: Normalization of real-time quantitative reverse transcription-PCR data: A model based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Clin Cancer Res. 64:5245–5250. 2004.

29 

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A and Speleman F: Accurate normalization of real time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:RESEARCH00342002. View Article : Google Scholar

30 

Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin Smith GK, et al: Minimal information for studies of extra cellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 7:15357502018. View Article : Google Scholar

31 

Ewing B, Hillier L, Wendl MC and Green P: Base calling of automated sequencer traces using phred. I Accuracy assessment. Genome Res. 8:175–185. 1998. View Article : Google Scholar : PubMed/NCBI

32 

Patsos G, André S, Roeckel N, Gromes R, Gebert J, Kopitz J and Gabius HJ: Compensation of loss of protein function in microsat ellite-unstable colon cancer cells (HCT116): A gene dependent effect on the cell surface glycan profile. Glycobiology. 19:726–734. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Lee J, Warnken U, Schnölzer M, Gebert J and Kopitz J: A new method for detection of tumor driver dependent changes of protein sialylation in a colon cancer cell line reveals nectin 3 as TGFBR2 target. Protein Sci. 24:1686–1694. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Lee J, Katzenmaier EM, Kopitz J and Gebert J: Reconstitution of TGFBR2 in HCT116 colorectal cancer cells causes increased LFNG expression and enhanced N-acetyl-d-glucosamine incorporation into Notch1. Cell Signal. 28:1105–1113. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Lee J, Fricke F, Warnken U, Schnölzer M, Kopitz J and Gebert J: Reconstitution of TGFBR2 mediated signaling causes upregulation of GDF-15 in HCT116 colorectal cancer cells. PLoS One. 10:e01315062015. View Article : Google Scholar

36 

He X, Wei Y, Wang Y, Liu L, Wang W and Li N: MiR-381 func tions as a tumor suppressor in colorectal cancer by targeting Twist1. Onco Targets Ther. 9:1231–1239. 2016.

37 

Cha DJ, Franklin JL, Dou Y, Liu Q, Higginbotham JN, Demory Beckler M, Weaver AM, Vickers K, Prasad N, Levy S, et al: KRAS-dependent sorting of miRNA to exosomes. Elife. 4:e071972015. View Article : Google Scholar : PubMed/NCBI

38 

Tang H, Wang Z, Liu Q, Liu X, Wu M and Li G: Disturbing miR-182 and -381 inhibits BRD7 transcription and glioma growth by directly targeting LRRC4. PLoS One. 9:e841462014. View Article : Google Scholar : PubMed/NCBI

39 

Zhang M, Huang S and Long D: MiR-381 inhibits migration and invasion in human gastric carcinoma through downregulatedting SOX4. Oncol Lett. 14:3760–3766. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Liang Y, Zhao Q, Fan L, Zhang Z, Tan B, Liu Y and Li Y: Down-regulation of MicroRNA-381 promotes cell proliferation and invasion in colon cancer through up-regulation of LRH 1. Biomed Pharmacother. 75:137–141. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Hu WW, Chen PC, Chen JM, Wu YM, Liu PY, Lu CH, Lin YF, Tang CH and Chao CC: Periostin promotes epithelial mesen chymal transition via the MAPK/miR-381 axis in lung cancer. Oncotarget. 8:62248–62260. 2017.PubMed/NCBI

42 

Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Heldin CH, Vanlandewijck M and Moustakas A: Regulation of EMT by TGFβ in cancer. FEBS Lett. 586:1959–1970. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Buckowitz A, Knaebel HP, Benner A, Bläker H, Gebert J, Kienle P, von Knebel Doeberitz M and Kloor M: Microsatellite instability in colorectal cancer is associated with local lympho cyte infiltration and low frequency of distant metastases. Br J Cancer. 92:1746–1753. 2005. View Article : Google Scholar : PubMed/NCBI

45 

Nishimura J, Handa R, Yamamoto H, Tanaka F, Shibata K, Mimori K, Takemasa I, Mizushima T, Ikeda M, Sekimoto M, et al: microRNA-181a is associated with poor prognosis of colorectal cancer. Oncol Rep. 28:2221–2226. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Ji D, Chen Z, Li M, Zhan T, Yao Y, Zhang Z, Xi J, Yan L and Gu J: MicroRNA-181a promotes tumor growth and liver metastasis in colorectal cancer by targeting the tumor suppressor WIF 1. Mol Cancer. 13:862014. View Article : Google Scholar

47 

Taylor MA, Sossey Alaoui K, Thompson CL, Danielpour D and Schiemann WP: TGF-β upregulates miR-181a expression to promote breast cancer metastasis. J Clin Invest. 123:150–163. 2013. View Article : Google Scholar

48 

Ji LJ, Su J, Xu AL, Pang B and Huang QM: MiR-134-5p attenu ates neuropathic pain progression through targeting Twist1. J Cell Biochem. Sep 6–2018. View Article : Google Scholar : Epub ahead of print.

49 

El Daly SM, Abba ML, Patil N and Allgayer H: miRs-134 and-370 function as tumor suppressors in colorectal cancer by inde pendently suppressing EGFR and PI3K signalling. Sci Rep. 6:247202016. View Article : Google Scholar

50 

Oh BY, Kim SY, Lee YS, Hong HK, Kim TW, Kim SH, Lee WY and Cho YB: Twist1 induced epithelial -mesenchymal transition according to microsatellite instability status in colon cancer cells. Oncotarget. 7:57066–57076. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Liu F, Cao QH, Lu DJ, Luo B, Lu XF, Luo RC and Wang XG: TMEM16A overexpression contributes to tumor invasion and poor prognosis of human gastric cancer through TGF β signaling. Oncotarget. 6:11585–11599. 2015.PubMed/NCBI

52 

Cao Q, Liu F, Ji K, Liu N, He Y, Zhang W and Wang L: MicroRNA 381 inhibits the metastasis of gastric cancer by targeting TMEM16A expression. J Exp Clin Cancer Res. 36:292017. View Article : Google Scholar

53 

Katsuno Y, Lamouille S and Derynck R: TGF-β signaling and epithelial mesenchymal transition in cancer progression. Curr Opin Oncol. 25:76–84. 2013. View Article : Google Scholar

54 

Liu L, Yao J, Li Z, Zu G, Feng D, Li Y, Qasim W, Zhang S, Li T, Zeng H and Tian X: miR-381-3p knockdown improves intestinal epithelial proliferation and barrier function after intestinal isch emia/reperfusion injury by targeting nurr1. Cell Death Dis. 9:4112018. View Article : Google Scholar

55 

Tang YT, Huang YY, Li JH, Qin SH, Xu Y, An TX, Liu CC, Wang Q and Zheng L: Alterations in exosomal miRNA profile upon epithelial mesenchymal transition in human lung cancer cell lines. BMC Genomics. 19:8022018. View Article : Google Scholar

56 

Yuan T, Huang X, Woodcock M, Du M, Dittmar R, Wang Y, Tsai S, Kohli M, Boardman L, Patel T and Wang L: Plasma extracellular RNA profiles in healthy and cancer patients. Sci Rep. 6:194132016. View Article : Google Scholar : PubMed/NCBI

57 

Wang J, Yan F, Zhao Q, Zhan F, Wang R, Wang L, Zhang Y and Huang X: Circulating exosomal miR 125a 3p as a novel biomarker for early-stage colon cancer. Sci Rep. 7:41502017. View Article : Google Scholar

58 

Slattery ML, Trivellas A, Pellatt AJ, Mullany LE, Stevens JR, Wolff RK and Herrick JS: Genetic variants in the TGFβ-signaling pathway influence expression of miRNAs in colon and rectal normal mucosa and tumor tissue. Oncotarget. 8:16765–16783. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Fang Y, Xiang J, Chen Z, Gu X, Li Z, Tang F and Zhou Z: miRNA expression profile of colon cancer stem cells compared to non-stem cells using the SW1116 cell line. Oncol Rep. 28:2115–2124. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Mishra L, Derynck R and Mishra B: Transforming growth factor-beta signaling in stem cells and cancer. Science. 310:68–71. 2005. View Article : Google Scholar : PubMed/NCBI

61 

Valmiki S, Ahuja V and Paul J: MicroRNA exhibit altered expression in the inflamed colonic mucosa of ulcerative colitis patients. World J Gastroenterol. 23:5324–5332. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Fang K, Law IKM, Padua D, Sideri A, Huang V, Kevil CG, Iliopoulos D and Pothoulakis C: MicroRNA-31-3p is involved in substance P (SP)-associated inflammation in human colonic epithelial cells and experimental colitis. Am J Pathol. 188:586–599. 2018. View Article : Google Scholar :

63 

Olaru AV, Selaru FM, Mori Y, Vazquez C, David S, Paun B, Cheng Y, Jin Z, Yang J, Agarwal R, et al: Dynamic changes in the expression of MicroRNA-31 during inflammatory bowel disease-associated neoplastic transformation. Inflamm Bowel Dis. 17:221–231. 2011. View Article : Google Scholar

64 

Li T, Luo W, Liu K, Lv X and Xi T: miR 31 promotes prolifera tion of colon cancer cells by targeting E2F2. Biotechnol Lett. 37(523): 5322015. View Article : Google Scholar

65 

Nosho K, Igarashi H, Nojima M, Ito M, Maruyama R, Yoshii S, Naito T, Sukawa Y, Mikami M, Sumioka W, et al: Association of microRNA-31 with BRAF mutation, colorectal cancer survival and serrated pathway. Carcinogenesis. 35:776–783. 2014. View Article : Google Scholar

66 

Laurent Puig P, Grisoni ML, Heinemann V, Liebaert F, Neureiter D, Jung A, Montestruc F, Gaston Mathe Y, Thiébaut R and Stintzing S: Validation of miR 31 3p expression to predict cetuximab efficacy when used as first-line treatment in RAS Wild-type metastatic colorectal cancer. Clin Cancer Res. 25:134–141. 2019. View Article : Google Scholar

67 

Harrison PW, Alako B, Amid C, Cerdeño Tárraga A, Cleland I, Holt S, Hussein A, Jayathilaka S, Kay S, Keane T, et al: The European nucleotide archive in 2018. Nucleic Acids Res. 47:D84–D88. 2019. View Article : Google Scholar :

68 

EV-TRACK Consortium; Van Deun J, Mestdagh P, Agostinis P, Akay Ö, Anand S, Anckaert J, Martinez ZA, Baetens T, Beghein E, et al: EV TRACK: Transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods. 14:228–232. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 55 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Fricke, F., Mussack, V., Buschmann, D., Hausser, I., Pfaffl, M.W., Kopitz, J., & Gebert, J. (2019). TGFBR2‑dependent alterations of microRNA profiles in extracellular vesicles and parental colorectal cancer cells. International Journal of Oncology, 55, 925-937. https://doi.org/10.3892/ijo.2019.4859
MLA
Fricke, F., Mussack, V., Buschmann, D., Hausser, I., Pfaffl, M. W., Kopitz, J., Gebert, J."TGFBR2‑dependent alterations of microRNA profiles in extracellular vesicles and parental colorectal cancer cells". International Journal of Oncology 55.4 (2019): 925-937.
Chicago
Fricke, F., Mussack, V., Buschmann, D., Hausser, I., Pfaffl, M. W., Kopitz, J., Gebert, J."TGFBR2‑dependent alterations of microRNA profiles in extracellular vesicles and parental colorectal cancer cells". International Journal of Oncology 55, no. 4 (2019): 925-937. https://doi.org/10.3892/ijo.2019.4859