Characterization of the human zinc finger nfx‑1‑type containing 1 encoding ZNFX1 gene and its response to 12‑O‑tetradecanoyl‑13‑acetate in HL‑60 cells

  • Authors:
    • Hiroshi Hamada
    • Mayu Yamamura
    • Hiroto Ohi
    • Yota Kobayashi
    • Kuniyoshi Niwa
    • Takahiro Oyama
    • Yasunari Mano
    • Masashi Asai
    • Sei‑Ichi Tanuma
    • Fumiaki Uchiumi
  • View Affiliations

  • Published online on: August 20, 2019     https://doi.org/10.3892/ijo.2019.4860
  • Pages: 896-904
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Human promyelocytic HL‑60 cells can be differentiated into macrophage‑like cells by treatment with 12‑O‑tetra decanoylphorbol‑13‑acetate (TPA). Certain 5' upstream regions of the zinc finger protein (ZNF)‑encoding genes contain duplicated GGAA motifs, which are frequently found in the TPA‑responding gene promoter regions. To examine transcriptional responses to TPA, 5'flanking regions of human zinc finger CCCH‑type containing, antiviral, ZNF252, ZNF343, ZNF555, ZNF782 and zinc finger nfx‑1‑type containing 1 (ZNFX1) genes were isolated by polymerase chain reaction (PCR) and ligated into a multiple‑cloning site of the pGL4.10[luc2] vector. Transient transfection and a luciferase assay revealed that the ZNFX1 promoter most prominently responded to the TPA treatment. Deletion and point mutation experiments indicated that the duplicated GGAA motif in the 100‑bp region positively responded to TPA. In addition, reverse transcription‑quantitative PCR and western blotting showed that the mRNA and protein of ZNFX1 accumulate during the differentiation of HL‑60 cells. These results indicated that expression of the TPA‑inducible ZNFX1 gene, which belongs to the group of interferon‑responsive genes, is regulated by the cis‑action of the duplicated GGAA motif.

References

1 

Hasegawa A, Kaneko H, Ishihara D, Nakamura M, Watanabe A, Yamamoto M, Trainor CD and Shimizu R: GATA1 binding kinetics on conformation-specific binding sites elicit differential transcriptional regulation. Mol Cell Biol. 36:2151–2167. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Liu Q, Niu N, Wada Y and Liu J: The role of Cdkn1A interacting zinc finger protein 1 (CIZ1) in DNA replication and pathophysi ology. Int J Mol Sci. 17:2122016. View Article : Google Scholar

3 

Tetreault MP, Weinblatt D, Shaverdashvili K, Yang Y and Katz JP: KLF4 transcriptionally activates non canonical WNT5A to control epithelial stratification. Sci Rep. 6:261302016. View Article : Google Scholar

4 

Liu Y, Ma D and Ji C: Zinc fingers and homeoboxes family in human diseases. Cancer Gene Ther. 22:223–226. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Prenzler F, Fragasso A, Schmitt A and Munz B: Functional analysis of ZFP36 proteins in keratinocytes. Eur J Cell Biol. 95:277–284. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Uchiumi F, Larsen S and Tanuma S: Transcriptional regulation of the human genes that encode DNA repair and mitochondrial function associated proteins. DNA Repair. Chen C: InTechOpen; London, UK: pp. 129–167. 2015

7 

Uchiumi F, Larsen S and Tanuma S: Possible roles of a duplicated GGAA motif as a driver cis element for cancer associated genes. Understand Cancer-research and treatment. iConcept: iConcept Press Ltd.; Hong Kong: pp. 1–25. 2016

8 

Uchiumi F, Miyazaki S and Tanuma S: The possible functions of duplicated ets (GGAA) motifs located near transcription start sites of various human genes. Cell Mol Life Sci. 68:2039–2051. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Larsen S, Kawamoto S, Tanuma S and Uchiumi F: The hematopoietic regulator, ELF 1, enhances the transcriptional response to Interferon β of the OAS1 anti viral gene. Sci Rep. 5:174972015. View Article : Google Scholar

10 

Uchiumi F, Shoji K, Sasaki Y, Sasaki M, Sasaki Y, Oyama T, Sugisawa K and Tanuma S: Characterization of the 5′-flanking region of the human TP53 gene and its response to the natural compound, resveratrol. J Biochem. 159:437–447. 2016. View Article : Google Scholar

11 

Uchiumi F, Arakawa J, Iwakoshi K, Ishibashi S and Tanuma S: Characterization of the 5′-flanking region of the human DNA helicase B (HELB) gene and its response to trans-Resveratrol. Sci Rep. 6:245102016. View Article : Google Scholar

12 

Uchiumi F, Arakawa J, Takihara M, Akui M, Ishibashi S and Tanuma S: The effect of trans resveratrol on the expression of the human DNA-repair associated genes. Int Mol Med. 3:783–792. 2016.

13 

Uchiumi F, Watanabe T and Tanuma S: Characterization of various promoter regions of the human DNA helicase encoding genes and identification of duplicated ets (GGAA) motifs as an essential transcription regulatory element. Exp Cell Res. 316:1523–1534. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Perdomo Sabogal A, Nowick K, Piccini I, Sudbrak R, Lehrach H, Yaspo ML, Warnatz HJ and Querfurth R: Human lineage-specific transcriptional regulation through GA binding protein transcription factor alpha (GABPa). Mol Biol Evol. 33:1231–1244. 2016. View Article : Google Scholar

15 

Oikawa T and Yamada T: Molecular biology of the Ets family of transcription factors. Gene. 303:11–34. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Hsu T, Trojanowska M and Watson DK: Ets proteins in biological control and cancer. J Cell Biochem. 91:896–903. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Sevinsky JR, Whalen AM and Ahn NG: Extracellular signal-regulated kinase induces the megakaryocyte GPIIb/CD41 gene through MafB/Kreisler. Mol Cell Biol. 24:4534–4545. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Cho HY and Lee SW, Seo SK, Choi IW, Choi I and Lee SW: Interferon sensitive response element (ISRE) is mainly respon sible for IFN-α-induced upregulation of programmed death 1 (PD 1) in macrophages. Biochim Biophys Acta. 1779:811–819. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Champhekar A, Damle SS, Freedman G, Carotta S, Nutt SL and Rothenberg EV: Regulation of early T lineage gene expression and developmental progression by the progenitor cell transcription factor PU.1. Genes Dev. 29:832–848. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Akagi T, Kuure S, Uranishi K, Koide H, Costantini F and Yokota T: ETS related transcription factors ETV4 and ETV5 are involved in proliferation and induction of differentiation-associated genes in embryonic stem (ES) cells. J Biol Chem. 290:22460–22473. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Wang C, Kam RK, Shi W, Xia Y, Chen X, Cao Y, Sun J, Du Y, Lu G, Chen Z, et al: The proto-oncogene transcription factor Ets 1 regulates neural crest development through histone deacetylase 1 to mediate output of bone morphogenetic protein signaling. J Biol Chem. 290:21925–21938. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Kar A and Gutierrez-Hartmann A: Molecular mechanisms of ETS transcription factor mediated tumorigenesis. Crit Rev Biochem Mol Biol. 48:522–543. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Komura S, Semi K, Itakura F, Shibata H, Ohno T, Hotta A, Woltjen K, Yamamoto T, Akiyama H and Yamada Y: An EWS FLI1 induced osteosarcoma model unveiled crucial role of impaired osteogenic differentiation on osteosarcoma development. Stem Cell Reports. 6:592–606. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Dean KC, Huang L, Chen Y, Lu X and Liu Y: An Rb1-dependent amplification loop between Ets1 and Zeb1 is evident in thymo cyte differentiation and invasive lung adenocarcinoma. BMC Mol Biol. 16:82015. View Article : Google Scholar

25 

Gulick T: Transfection using DEAE-dextran. Curr Protoc Mol Biol. Chapter 20: Unit 20.4. 2003. View Article : Google Scholar

26 

Katagiri K, Katagiri T, Koyama Y, Morikawa M, Yamamoto T and Yoshida T: Expression of src family genes during monocytic differentiation of HL-60 cells. J Immunol. 146:701–707. 1991.PubMed/NCBI

27 

Schmittgen TD and Livak KJ: Analyzing real time PCR data by the comparative C(T) method. Nat Protoc. 3:1101–1108. 2008. View Article : Google Scholar

28 

Uchiumi F, Ohi H and Tanuma S: Application of DEAE-dextran to an efficient gene transfer system. Seikagaku. 86:532–537. 2014.In Japanese. PubMed/NCBI

29 

White SL, Belov L, Barber N, Hodgkin PD and Christopherson RI: Immunophenotypic changes induced on human HL60 leukemia cells by 1 alpha, 25-dihydroxyvitamin D3 and 12-O-terradecanoyl phorbol 13 acetate. Leuk Res. 29:1141–1151. 2005. View Article : Google Scholar : PubMed/NCBI

30 

Grant S, Bhalla K, Weinstein B, Pestka S, Mileno MD and Fisher PB: Recombinant human interferon sensitizes resistant myeloid leukemic cells to induction of terminal differentiation. Biochem Biophys Res Commun. 130:379–388. 1985. View Article : Google Scholar : PubMed/NCBI

31 

Forde N, Duffy GB, McGettigan PA, Browne JA, Mehta JP, Kelly AK, Mansouri Attia N, Sandra O, Loftus BJ, Crowe MA, et al: Evidence for an early endometrial response to pregnancy in cattle: Both dependent upon and independent of interferon tau. Physiol Genomics. 44:799–810. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Robertson KA, Hill DP, Kelley MR, Tritt R, Crum B, Van Epps S, Srour E, Rice S and Hromas R: The myeloid zinc finger gene (MZF-1) delays retinoic acid-induced apoptosis and differentiation in myeloid leukemia cells. Leukemia. 12:690–698. 1998. View Article : Google Scholar : PubMed/NCBI

33 

Fu H, Yang G, Lu F, Wang R, Yao L and Lu Z: Transcription up regulation of restin by all-trans retinoic acid through STAT1 in cancer cell differentiation process. Biochem Biophys Res Commun. 343:1009–1016. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Nguyen VT and Benveniste EN: Involvement of STAT-1 and Ets family members in interferon gamma induction of CD40 transcription in microglia/macrophages. J Biol Chem. 275:23674–23684. 2000. View Article : Google Scholar : PubMed/NCBI

35 

Cohen S, Dovrat S, Sarid R, Huberman E and Salzberg S: JAK-STAT signaling involved in phorbol 12 myristate 13 acetate and dimethyl sulfoxide induced 2′-5′ oligoadenylate synthetase expression in human HL 60 leukemia cells. Leuk Res. 29:923–931. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Deléhouzée S, Yoshioka T, Sawa C, Sawada J, Ito T, Omori M, Wada T, Yamaguchi Y, Kabe Y and Handa H: GABP, HCF-1 and YY1 are involved in Rb gene expression during myogenesis. Genes Cells. 10:717–731. 2005. View Article : Google Scholar : PubMed/NCBI

37 

Solomon LA, Li SK, Piskorz J, Xu LS and DeKoter RP: Genome wide comparison of PU.1 and Spi-B binding sites in a mouse B lymphoma cell line. BMC Genomics. 16:762015. View Article : Google Scholar

38 

Uchiumi F, Sakakibara G, Sato J and Tanuma S: Characterization of the promoter region of the human parg gene and its response to PU.1 during differentiation of HL-60 cells. Genes Cells. 13:1229–1247. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Hamada H, Goto Y, Arakawa J, Murayama E, Ogawa Y, Konno M, Oyama T, Asai M, Sato A, Tanuma SI and Uchiumi F: Characterization of the human E2F4 promoter region and its response to 12-O-tetradecanoylphorbol 13 acetate. J Biochem. pii: mvz047. 2019. View Article : Google Scholar : Epub ahead of print.

40 

Bose R, Karthaus WR, Armenia J, Abida W, Iaquinta PJ, Zhang Z, Wongvipat J, Wasmuth EV, Shah N, Sullivan PS, et al: ERF mutations reveal a balance of ETS factors controlling pros tate oncogenesis. Nature. 546:671–675. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Kasashima K, Nakamura Y and Kozu T: Altered expression profiles of microRNAs during TPA-induced differentiation of HL-60 cells. Biochem Biophys Res Commun. 322:403–410. 2004. View Article : Google Scholar : PubMed/NCBI

42 

Zheng X, Ravatn R, Lin Y, Shih WC, Rabson A, Strair R, Huberman E, Conney A and Chin KV: Gene expression of TPA induced differentiation in HL 60 cells by DNA microarray analysis. Nucleic Acids Res. 30:4489–4499. 2002. View Article : Google Scholar : PubMed/NCBI

43 

Dick FA and Rubin SM: Molecular mechanisms underlying RB protein function. Nat Rev Mol Cell Biol. 14:297–306. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Bagchi S, Weinmann R and Raychaudhuri P: The retinoblastoma protein copurifies with E2F-1 an E1A-regulated inhibitor of the transcription factor E2F. Cell. 65:106310721991. View Article : Google Scholar : PubMed/NCBI

45 

Askarian Amiri MN, Crawford J, French JD, Smart CE, Smith MA, Clark MB, Ru K, Mercer TR, Thompson ER, Lakhani SR, et al: SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA. 17:878–891. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Wang T, Ma S, Qi X, Tang X, Cui D, Wang Z, Chi J, Li P and Zhai B: Long noncoding RNA ANFX1-AS1 suppresses growth of hepatocellular carcinoma cells by regulating the methylation of miR-9. Onco Targets Ther. 9:5005–5014. 2016. View Article : Google Scholar :

47 

Chevier A and Corcoran LM: BTB-ZF transcription factors, a growing family of regulators of early and late B-cell develop ment. Immunol Cell Biol. 92:481–488. 2014. View Article : Google Scholar

48 

Singh S, Howell D, Trivedi N, Kessler K, Ong T, Rosmaninho P, Raposo AA, Robinson G, Roussel MF, Castro DS and Solecki DJ: Zeb1 controls neuron differentiation and germinal zone exit by a mesenchymal epithelial like transition. Elife. 5:pii: e12717. 2016. View Article : Google Scholar

49 

Glass C, Wilson M, Gonzalez R, Zhang Y and Perkins AS: The role of EVI1 in myeloid malignancies. Blood Cells Mol Dis. 53:67–76. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Wan G, Fields BD, Spracklin G, Shukla A, Phillips CM and Kennedy S: Spatiotemporal regulation of liquid like condensates in epigenetic inheritance. Nature. 557:679–683. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Leszczyniecka M, Roberts T, Dent P, Grant S and Fisher PB: Differentiation therapy of human cancer: Basic science and clinical applications. Pharmacol Ther. 90:105–156. 2001. View Article : Google Scholar : PubMed/NCBI

52 

Luo H, Liu WH, Liang HY, Yan HT, Lin N, Li DY, Wang T and Tang LJ: Differentiation inducing therapeutic effect of Notch inhibition in reversing malignant transformation of liver normal stem cells via MET. Oncotarget. 9:18885–18895. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 55 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Hamada, H., Yamamura, M., Ohi, H., Kobayashi, Y., Niwa, K., Oyama, T. ... Uchiumi, F. (2019). Characterization of the human zinc finger nfx‑1‑type containing 1 encoding ZNFX1 gene and its response to 12‑O‑tetradecanoyl‑13‑acetate in HL‑60 cells. International Journal of Oncology, 55, 896-904. https://doi.org/10.3892/ijo.2019.4860
MLA
Hamada, H., Yamamura, M., Ohi, H., Kobayashi, Y., Niwa, K., Oyama, T., Mano, Y., Asai, M., Tanuma, S., Uchiumi, F."Characterization of the human zinc finger nfx‑1‑type containing 1 encoding ZNFX1 gene and its response to 12‑O‑tetradecanoyl‑13‑acetate in HL‑60 cells". International Journal of Oncology 55.4 (2019): 896-904.
Chicago
Hamada, H., Yamamura, M., Ohi, H., Kobayashi, Y., Niwa, K., Oyama, T., Mano, Y., Asai, M., Tanuma, S., Uchiumi, F."Characterization of the human zinc finger nfx‑1‑type containing 1 encoding ZNFX1 gene and its response to 12‑O‑tetradecanoyl‑13‑acetate in HL‑60 cells". International Journal of Oncology 55, no. 4 (2019): 896-904. https://doi.org/10.3892/ijo.2019.4860