Interleukin‑33 expression in ovarian cancer and its possible suppression of peritoneal carcinomatosis

  • Authors:
    • Atsushi Sekiya
    • Shiro Suzuki
    • Ayako Tanaka
    • Satomi Hattori
    • Yusuke Shimizu
    • Nobuhisa Yoshikawa
    • Yoshihiro Koya
    • Hiroaki Kajiyama
    • Fumitaka Kikkawa
  • View Affiliations

  • Published online on: July 17, 2019     https://doi.org/10.3892/ijo.2019.4845
  • Pages: 755-765
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Refractory peritoneal carcinomatosis is a common terminal feature of epithelial ovarian cancer (EOC). Previous reports have suggested that immunotherapy is a promising therapeutic strategy for EOC. Interleukin (IL)‑33 is a member of the IL‑1 superfamily of cytokines. The role of IL‑33 in tissue inflammation and promoting type 2 immune responses has been established, and recently, there is accumulating evidence to suggest the involvement of IL‑33 in carcinogenesis. In this study, we focused on the association between the tumor expression of IL‑33 and ovarian peritoneal carcinomatosis. We used an immunosufficient murine model of peritoneal carcinomatosis and human EOC samples. The overexpression of IL‑33 in the ID8 mouse EOC cell line tumors significantly prolonged the survival of immunocompetent mice in the peritoneal carcinomatosis setting, but not in the subcutaneous model. In addition, the silencing of IL‑33 in ID8‑T6 cells (subclone with high dissemination potential) significantly shortened the survival of the tumor‑bearing mice. This was likely due to the intratumoral accumulation of CD8+ and CD4+ T cells, and a decrease in CD11b+Gr1+ cells. Furthermore, IL‑33 induced the intraperitoneal microenvironment favoring tumor elimination through the inhibition of differentiation into CD11b+Gr1+ cells. On the whole, the findings of this study suggest IL‑33 to be a cytokine that reflects antitumor peritoneal conditions. Further investigation of the antitumorigenic role of IL‑33 may aid in the development of more effective therapeutic approaches for the treatment of EOC with peritoneal carcinomatosis.

References

1 

Ebell MH, Culp MB and Radke TJ: A Systematic review of symptoms for the diagnosis of ovarian cancer. Am J Prev Med. 50:384–394. 2016. View Article : Google Scholar

2 

Coleman RL, Monk BJ, Sood AK and Herzog TJ: Latest research and treatment of advanced-stage epithelial ovarian cancer. Nat Rev Clin Oncol. 10:211–224. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Chae CS, Teran-Cabanillas E and Cubillos-Ruiz JR: Dendritic cell rehab: New strategies to unleash therapeutic immunity in ovarian cancer. Cancer Immunol Immunother. 66:969–977. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Suzuki S, Sakata J, Utsumi F, Sekiya R, Kajiyama H, Shibata K, Kikkawa F and Nakatsura T: Efficacy of glypican-3-derived peptide vaccine therapy on the survival of patients with refractory ovarian clear cell carcinoma. OncoImmunology. 5:e12385422016. View Article : Google Scholar : PubMed/NCBI

5 

Zhu X, Cai H, Zhao L, Ning L and Lang J: CAR-T cell therapy in ovarian cancer: From the bench to the bedside. Oncotarget. 8:64607–64621. 2017.PubMed/NCBI

6 

Haraldsen G, Balogh J, Pollheimer J, Sponheim J and Küchler AM: Interleukin-33 - cytokine of dual function or novel alarmin? Trends Immunol. 30:227–233. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Liew FY, Pitman NI and McInnes IB: Disease-associated functions of IL-33: The new kid in the IL-1 family. Nat Rev Immunol. 10:103–110. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, et al: IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-asso- ciated cytokines. Immunity. 23:479–490. 2005. View Article : Google Scholar : PubMed/NCBI

9 

Oboki K, Ohno T, Kajiwara N, Saito H and Nakae S: IL-33 and IL-33 receptors in host defense and diseases. Allergol Int. 59:143–160. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Sattler S, Smits HH, Xu D and Huang FP: The evolutionary role of the IL-33/ST2 system in host immune defence. Arch Immunol Ther Exp (Warsz). 61:107–117. 2013. View Article : Google Scholar

11 

Kurowska-Stolarska M, Kewin P, Murphy G, Russo RC, Stolarski B, Garcia CC, Komai-Koma M, Pitman N, Li Y, Niedbala W, et al: IL-33 induces antigen-specific IL-5+ T cells and promotes allergic-induced airway inflammation independent of IL-4. J Immunol. 181:4780–4790. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ, Ying S, Pitman N, Mirchandani A, Rana B, van Rooijen N, et al: IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol. 183:6469–6477. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Pei C, Barbour M, Fairlie-Clarke KJ, Allan D, Mu R and Jiang HR: Emerging role of interleukin-33 in autoimmune diseases. Immunology. 141:9–17. 2014. View Article : Google Scholar :

14 

Wang S, Ding L, Liu SS, Wang C, Leng RX, Chen GM, Fan YG, Pan HF and Ye DQ: IL-33: A potential therapeutic target in autoimmune diseases. J Investig Med. 60:1151–1156. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Miller AM, Xu D, Asquith DL, Denby L, Li Y, Sattar N, Baker AH, McInnes IB and Liew FY: IL-33 reduces the development of atherosclerosis. J Exp Med. 205:339–346. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN and Lee RT: IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 117:1538–1549. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Yu XX, Hu Z, Shen X, Dong LY, Zhou WZ and Hu WH: IL-33 promotes gastric cancer cell invasion and migration via ST2 ERK1/2 pathway. Dig Dis Sci. 60:1265–1272. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Zhang P, Liu XK, Chu Z, Ye JC, Li KL, Zhuang WL, Yang DJ and Jiang YF: Detection of interleukin-33 in serum and carcinoma tissue from patients with hepatocellular carcinoma and its clinical implications. J Int Med Res. 40:1654–1661. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Kim JY, Lim SC, Kim G, Yun HJ, Ahn SG and Choi HS: Interleukin-33/ST2 axis promotes epithelial cell transformation and breast tumorigenesis via upregulation of COT activity. Oncogene. 34:4928–4938. 2015. View Article : Google Scholar

20 

Liu J, Shen JX, Hu JL, Huang WH and Zhang GJ: Significance of interleukin-33 and its related cytokines in patients with breast cancers. Front Immunol. 5:1412014. View Article : Google Scholar : PubMed/NCBI

21 

O'Donnell C, Mahmoud A, Keane J, Murphy C, White D, Carey S, O'Riordain M, Bennett MW, Brint E and Houston A: An antitumorigenic role for the IL-33 receptor, ST2L, in colon cancer. Br J Cancer. 114:37–43. 2016. View Article : Google Scholar :

22 

Akimoto M, Hayashi JI, Nakae S, Saito H and Takenaga K: Interleukin-33 enhances programmed oncosis of ST2L-positive low-metastatic cells in the tumour microenvironment of lung cancer. Cell Death Dis. 7:e20572016. View Article : Google Scholar : PubMed/NCBI

23 

Tong X, Barbour M, Hou K, Gao C, Cao S, Zheng J, Zhao Y, Mu R and Jiang HR: Interleukin-33 predicts poor prognosis and promotes ovarian cancer cell growth and metastasis through regulating ERK and JNK signaling pathways. Mol Oncol. 10:113–125. 2016. View Article : Google Scholar

24 

Saied EM and El-Etreby NM: The role and prognostic value of inducible nitric oxide synthase (iNOS) and interleukin-33 (IL-33) in serous and mucinous epithelial ovarian tumours. Ann Diagn Pathol. 27:62–68. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar

26 

Suzuki S, Terauchi M, Umezu T, Kajiyama H, Shibata K, Nawa A and Kikkawa F: Identification and characterization of cancer stem cells in ovarian yolk sac tumors. Cancer Sci. 101:2179–2185. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Villarreal DO, Wise MC, Walters JN, Reuschel EL, Choi MJ, Obeng-Adjei N, Yan J, Morrow MP and Weiner DB: Alarmin IL-33 acts as an immunoadjuvant to enhance antigen-specific tumor immunity. Cancer Res. 74:1789–1800. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Gao K, Li X and Zhang L, Bai L, Dong W, Gao K, Shi G, Xia X, Wu L and Zhang L: Transgenic expression of IL-33 activates CD8(+) T cells and NK cells and inhibits tumor growth and metastasis in mice. Cancer Lett. 335:463–471. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Gao X, Wang X, Yang Q, Zhao X, Wen W, Li G, Lu J, Qin W, Qi Y, Xie F, et al: Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. J Immunol. 194:438–445. 2015. View Article : Google Scholar

30 

Millrud CR, Bergenfelz C and Leandersson K: On the origin of myeloid-derived suppressor cells. Oncotarget. 8:3649–3665. 2017. View Article : Google Scholar :

31 

Kolomeyevskaya N, Eng KH, Khan AN, Grzankowski KS, Singel KL, Moysich K and Segal BH: Cytokine profiling of ascites at primary surgery identifies an interaction of tumor necrosis factor-α and interleukin-6 in predicting reduced progression-free survival in epithelial ovarian cancer. Gynecol Oncol. 138:352–357. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Morales JK, Kmieciak M, Knutson KL, Bear HD and Manjili MH: GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-GrL- bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Res Treat. 123:39–49. 2010. View Article : Google Scholar

33 

Wu L, Deng Z, Peng Y, Han L, Liu J, Wang L, Li B, Zhao J, Jiao S and Wei H: Ascites-derived IL-6 and IL-10 synergistically expand CD14+HLA-DR-/low myeloid-derived suppressor cells in ovarian cancer patients. Oncotarget. 8:76843–76856. 2017.PubMed/NCBI

34 

Brickshawana A, Shapiro VS, Kita H and Pease LR: Lineage(-) Sca1+c-Kit(-)CD25+ cells are IL-33-responsive type 2 innate cells in the mouse bone marrow. J Immunol. 187:5795–5804. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Mitsui H, Shibata K, Suzuki S, Umezu T, Mizuno M, Kajiyama H and Kikkawa F: Functional interaction between peritoneal mésothélial cells and stem cells of ovarian yolk sac tumor (SC-OYST) in peritoneal dissemination. Gynecol Oncol. 124:303–310. 2012. View Article : Google Scholar

36 

Lau TS, Chan LK, Wong EC, Hui CW, Sneddon K, Cheung TH, Yim SF, Lee JH, Yeung CS, Chung TK, et al: A loop of cancer-stroma-cancer interaction promotes peritoneal metastasis of ovarian cancer via TNFα-TGFα-EGFR. Oncogene. 36:3576–3587. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Fujikake K, Kajiyama H, Yoshihara M, Nishino K, Yoshikawa N, Utsumi F, Suzuki S, Niimi K, Sakata J, Mitsui H, et al: A novel mechanism of neovascularization in peritoneal dissemination via cancer-associated mesothelial cells affected by TGF-β derived from ovarian cancer. Oncol Rep. 39:193–200. 2018.

38 

Yokoi A, Yoshioka Y, Yamamoto Y, Ishikawa M, Ikeda SI, Kato T, Kiyono T, Takeshita F, Kajiyama H, Kikkawa F, et al: Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nat Commun. 8:144702017. View Article : Google Scholar : PubMed/NCBI

39 

Lohning M, Stroehmann A, Coyle AJ, Grogan JL, Lin S, Gutierrez-Ramos JC, Levinson D, Radbruch A and Kamradt T: T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. Proc Natl Acad Sci USA. 95:6930–6935. 1998. View Article : Google Scholar : PubMed/NCBI

40 

Xu D, Chan WL, Leung BP, Huang F, Wheeler R, Piedrahta D, Robinson JH and Liew FY: Selective expression of a stable cell surface molecule on type 2 but not type 1 helper T cells. J Exp Med. 187:787–794. 1998. View Article : Google Scholar : PubMed/NCBI

41 

Baumann C, Bonilla WV, Fröhlich A, Helmstetter C, Peine M, Hegazy AN, Pinschewer DD and Löhning M: T-bet- and STAT4-dependent IL-33 receptor expression directly promotes antiviral Th1 cell responses. Proc Natl Acad Sci USA. 112:4056–4061. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Bonilla WV, Fröhlich A, Senn K, Kallert S, Fernandez M, Johnson S, Kreutzfeldt M, Hegazy AN, Schrick C, Fallon PG, et al: The alarmin interleukin-33 drives protective antiviral CD8+ T cell responses. Science. 335:984–989. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Gabrilovich DI and Nagaraj S: Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 9:162–174. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Ribechini E, Greifenberg V, Sandwick S and Lutz MB: Subsets, expansion and activation of myeloid-derived suppressor cells. Med Microbiol Immunol (Berl). 199:273–281. 2010. View Article : Google Scholar

45 

Lim HX, Choi S, Cho D and Kim TS: IL-33 inhibits the differentiation and immunosuppressive activity of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Immunol Cell Biol. 95:99–107. 2017. View Article : Google Scholar

46 

Brunner SM, Rubner C, Kesselring R, Martin M, Griesshammer E, Ruemmele P, Stempfl T, Teufel A, Schlitt HJ and Fichtner-Feigl S: Tumor-infiltrating, interleukin-33-producing effector-memory CD8(+) T cells in resected hepatocellular carcinoma prolong patient survival. Hepatology. 61:1957–1967. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 55 Issue 3

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Sekiya, A., Suzuki, S., Tanaka, A., Hattori, S., Shimizu, Y., Yoshikawa, N. ... Kikkawa, F. (2019). Interleukin‑33 expression in ovarian cancer and its possible suppression of peritoneal carcinomatosis. International Journal of Oncology, 55, 755-765. https://doi.org/10.3892/ijo.2019.4845
MLA
Sekiya, A., Suzuki, S., Tanaka, A., Hattori, S., Shimizu, Y., Yoshikawa, N., Koya, Y., Kajiyama, H., Kikkawa, F."Interleukin‑33 expression in ovarian cancer and its possible suppression of peritoneal carcinomatosis". International Journal of Oncology 55.3 (2019): 755-765.
Chicago
Sekiya, A., Suzuki, S., Tanaka, A., Hattori, S., Shimizu, Y., Yoshikawa, N., Koya, Y., Kajiyama, H., Kikkawa, F."Interleukin‑33 expression in ovarian cancer and its possible suppression of peritoneal carcinomatosis". International Journal of Oncology 55, no. 3 (2019): 755-765. https://doi.org/10.3892/ijo.2019.4845