Open Access

The interaction of LOXL2 with GATA6 induces VEGFA expression and angiogenesis in cholangiocarcinoma

  • Authors:
    • Tao Peng
    • Xiang Deng
    • Feng Tian
    • Zhonghu Li
    • Peng Jiang
    • Xin Zhao
    • Guangyu Chen
    • Yan Chen
    • Ping Zheng
    • Dajiang Li
    • Shuguang Wang
  • View Affiliations

  • Published online on: July 15, 2019     https://doi.org/10.3892/ijo.2019.4837
  • Pages: 657-670
  • Copyright: © Peng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Cholangiocarcinoma (CCA) is the second most common hepatobiliary cancer after hepatocellular carcinoma. Antiangiogenic therapy has been administered to patients with CCA, but the benefits of this therapy remain unsatisfactory. Improved understanding of the molecular mechanisms underlying angiogenesis in CCA is required. In the present study, the expression of GATA‑binding protein 6 (GATA6), lysyl oxidase‑like 2 (LOXL2) and vascular endothelial growth factor A (VEGFA), in addition to the microvessel density (MVD), were evaluated by performing immunohistochemical staining of human CCA microarrays. The expression of GATA6/LOXL2 was associated with poor overall survival (P=0.01) and disease‑free survival (P=0.02), and was positively associated with VEGFA expression (P=0.02) and MVD (P=0.04). In vitro, western blotting, reverse transcription‑quantitative PCR analysis and ELISAs revealed that altered GATA6 and LOXL2 expression regulated the expression levels of secreted VEGFA. Co‑immunoprecipitation demonstrated a physical interaction between GATA6 and LOXL2 in CCA cell lines, and the scavenger receptor cysteine‑rich domain of LOXL2 interacted with GATA6, which regulated VEGFA mRNA expression and protein secretion, and promoted tube formation. In vivo analyses further revealed that GATA6/LOXL2 promoted VEGFA expression, angiogenesis and tumor growth. The GATA6/LOXL2 complex represents a novel candidate prognostic marker for stratifying patients with CCA. Drugs targeting this complex may possess great therapeutic value in the treatment of CCA.

References

1 

Welzel TM, McGlynn KA, Hsing AW, O'Brien TR and Pfeiffer RM: Impact of classification of hilar cholangiocarcinomas (Klatskin tumors) on the incidence of intra- and extrahepatic cholangiocarcinoma in the United States. J Natl Cancer Inst. 98:873–875. 2006. View Article : Google Scholar : PubMed/NCBI

2 

Rizvi S and Gores GJ: Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 145:1215–1229. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Khan SA, Taylor-Robinson SD, Toledano MB, Beck A, Elliott P and Thomas HC: Changing international trends in mortality rates for liver, biliary and pancreatic tumours. J Hepatol. 37:806–813. 2002. View Article : Google Scholar : PubMed/NCBI

4 

Jarnagin WR, Fong Y, DeMatteo RP, Gonen M, Burke EC, Bodniewicz BS J, Youssef BA M, Klimstra D and Blumgart LH: Staging, resectability, and outcome in 225 patients with hilar cholangiocarcinoma. Ann Surg. 234:507–519. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, Madhusudan S, Iveson T, Hughes S, Pereira SP, et al: ABC-02 Trial Investigators: Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 362:1273–1281. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Jayson GC, Kerbel R, Ellis LM and Harris AL: Antiangiogenic therapy in oncology: Current status and future directions. Lancet. 388:518–529. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Butler JM, Kobayashi H and Rafii S: Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer. 10:138–146. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS and Ferrara N: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 362:841–844. 1993. View Article : Google Scholar : PubMed/NCBI

10 

Takahashi Y, Kitadai Y, Bucana CD, Cleary KR and Ellis LM: Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res. 55:3964–3968. 1995.PubMed/NCBI

11 

Koh YW, Han JH, Yoon DH, Suh C and Huh J: PD-L1 expression correlates with VEGF and microvessel density in patients with uniformly treated classical Hodgkin lymphoma. Ann Hematol. 96:1883–1890. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Benckert C, Thelen A, Cramer T, Weichert W, Gaebelein G, Gessner R and Jonas S: Impact of microvessel density on lymph node metastasis and survival after curative resection of pancreatic cancer. Surg Today. 42:169–176. 2012. View Article : Google Scholar

13 

Tynninen O, Sjöström J, von Boguslawski K, Bengtsson NO, Heikkilä R, Malmström P, Ostenstad B, Wist E, Valvere V, Saksela E, et al: Tumour microvessel density as predictor of chemotherapy response in breast cancer patients. Br J Cancer. 86:1905–1908. 2002. View Article : Google Scholar : PubMed/NCBI

14 

Wang L, Zhou R, Zhao Y, Dong S, Zhang J, Luo Y, Huang N, Shi M, Bin J, Liao Y, et al: MACC-1 promotes endothelium-dependent angiogenesis in gastric cancer by activating TWIST1/VEGF-A signal pathway. PLoS One. 11:e01571372016. View Article : Google Scholar : PubMed/NCBI

15 

Thelen A, Scholz A, Weichert W, Wiedenmann B, Neuhaus P, Gessner R, Benckert C and Jonas S: Tumor-associated angio-genesis and lymphangiogenesis correlate with progression of intrahepatic cholangiocarcinoma. Am J Gastroenterol. 105:1123–1132. 2010. View Article : Google Scholar

16 

Möbius C, Demuth C, Aigner T, Wiedmann M, Wittekind C, Mössner J, Hauss J and Witzigmann H: Evaluation of VEGF A expression and microvascular density as prognostic factors in extrahepatic cholangiocarcinoma. Eur J Surg Oncol. 33:1025–1029. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Li Y, Gao ZH and Qu XJ: The adverse effects of sorafenib in patients with advanced cancers. Basic Clin Pharmacol Toxicol. 116:216–221. 2015. View Article : Google Scholar

18 

El-Khoueiry AB, Rankin CJ, Ben-Josef E, Lenz HJ, Gold PJ, Hamilton RD, Govindarajan R, Eng C and Blanke CD: SWOG 0514: A phase II study of sorafenib in patients with unresectable or metastatic gallbladder carcinoma and cholangio-carcinoma. Invest New Drugs. 30:1646–1651. 2012. View Article : Google Scholar

19 

Pan TT, Wang W, Jia WD and Xu GL: A single-center experience of sorafenib monotherapy in patients with advanced intrahepatic cholangiocarcinoma. Oncol Lett. 13:2957–2964. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Li Y, Li S, Zhu Y, Liang X, Meng H, Chen J, Zhang D, Guo H and Shi B: Incidence and risk of sorafenib-induced hypertension: A systematic review and meta-analysis. J Clin Hypertens (Greenwich). 16:177–185. 2014. View Article : Google Scholar

21 

Abdel-Rahman O and ElHalawani H: Risk of cardiovascular adverse events in patients with solid tumors treated with ramu-cirumab: A meta analysis and summary of other VEGF targeted agents. Crit Rev Oncol Hematol. 102:89–100. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Alexandrovich A, Qureishi A, Coudert AE, Zhang L, Grigoriadis AE, Shah AM, Brewer AC and Pizzey JA: A role for GATA-6 in vertebrate chondrogenesis. Dev Biol. 314:457–470. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Molkentin JD: The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem. 275:38949–38952. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Pierce GB: The cancer cell and its control by the embryo. Rous-Whipple Award lecture. Am J Pathol. 113:117–124. 1983.PubMed/NCBI

25 

Sulahian R, Casey F, Shen J, Qian ZR, Shin H, Ogino S, Weir BA, Vazquez F, Liu XS, Hahn WC, et al: An integrative analysis reveals functional targets of GATA6 transcriptional regulation in gastric cancer. Oncogene. 33:5637–5648. 2014. View Article : Google Scholar :

26 

Tsuji S, Kawasaki Y, Furukawa S, Taniue K, Hayashi T, Okuno M, Hiyoshi M, Kitayama J and Akiyama T: The miR-363 GATA6-Lgr5 pathway is critical for colorectal tumourigenesis. Nat Commun. 5:31502014. View Article : Google Scholar

27 

Chen WB, Huang FT, Zhuang YY, Tang J, Zhuang XH, Cheng WJ, Gu ZQ and Zhang SN: Silencing of GATA6 suppresses SW 1990 pancreatic cancer cell growth in vitro and up-regulates reactive oxygen species. Dig Dis Sci. 58:2518–2527. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Song Y, Tian T, Fu X, Wang W, Li S, Shi T, Suo A, Ruan Z, Guo H and Yao Y: GATA6 is overexpressed in breast cancer and promotes breast cancer cell epithelial-mesenchymal transition by upregulating slug expression. Exp Mol Pathol. 99:617–627. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Froese N, Kattih B, Breitbart A, Grund A, Geffers R, Molkentin JD, Kispert A, Wollert KC, Drexler H and Heineke J: GATA6 promotes angiogenic function and survival in endothelial cells by suppression of autocrine transforming growth factor beta/activin receptor-like kinase 5 signaling. J Biol Chem. 286:5680–5690. 2011. View Article : Google Scholar

30 

Hou R, Yan H, Niu X, Chang W, An P, Wang C, Yang Y, Yan X, Li J, Liu R, et al: Gene expression profile of dermal mesenchymal stem cells from patients with psoriasis. J Eur Acad Dermatol Venereol. 28:1782–1791. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Cheng CC, Chang SJ, Chueh YN, Huang TS, Huang PH, Cheng SM, Tsai TN, Chen JW and Wang HW: Distinct angio-genesis roles and surface markers of early and late endothelial progenitor cells revealed by functional group analyses. BMC Genomics. 14:1822013. View Article : Google Scholar

32 

Kagan HM and Li W: Lysyl oxidase: Properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem. 88:660–672. 2003. View Article : Google Scholar : PubMed/NCBI

33 

Hohenester E, Sasaki T and Timpl R: Crystal structure of a scavenger receptor cysteine-rich domain sheds light on an ancient superfamily. Nat Struct Biol. 6:228–232. 1999. View Article : Google Scholar : PubMed/NCBI

34 

Peinado H, Del Carmen Iglesias-de la Cruz M, Olmeda D, Csiszar K, Fong KS, Vega S, Nieto MA, Cano A and Portillo F: A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J. 24:3446–3458. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Canesin G, Cuevas EP, Santos V, López-Menéndez C, Moreno-Bueno G, Huang Y, Csiszar K, Portillo F, Peinado H, Lyden D, et al: Lysyl oxidase-like 2 (LOXL2) and E47 EMT factor: Novel partners in E-cadherin repression and early metastasis colonization. Oncogene. 34:951–964. 2015. View Article : Google Scholar

36 

Van Bergen T, Spangler R, Marshall D, Hollanders K, Van de Veire S, Vandewalle E, Moons L, Herman J, Smith V and Stalmans I: The role of LOX and LOXL2 in the pathogenesis of an experimental model of choroidal neovascularization. Invest Ophthalmol Vis Sci. 56:5280–5289. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Zaffryar-Eilot S, Marshall D, Voloshin T, Bar-Zion A, Spangler R, Kessler O, Ghermazien H, Brekhman V, Suss-Toby E, Adam D, et al: Lysyl oxidase-like-2 promotes tumour angio-genesis and is a potential therapeutic target in angiogenic tumours. Carcinogenesis. 34:2370–2379. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Tian F, Li D, Chen J, Liu W, Cai L, Li J, Jiang P, Liu Z, Zhao X, Guo F, et al: Aberrant expression of GATA binding protein 6 correlates with poor prognosis and promotes metastasis in chol-angiocarcinoma. Eur J Cancer. 49:1771–1780. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Xu J, Li D, Li X, Liu Z, Li T, Jiang P, He Q, Tian F, Gao Y, Wang D, et al: 67 laminin receptor promotes the malignant potential of tumour cells up-regulating lysyl oxidase-like 2 expression in cholangiocarcinoma. Dig Liver Dis. 46:750–757. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Edge SBBD, Compton CC, Fritz AG, Greene FL and Trotti A: AJCC Cancer Staging Manual. 7th edition. Springer; New York, NY: 2010

41 

Weidner N, Semple JP, Welch WR and Folkman J: Tumor angio-genesis and metastasis - correlation in invasive breast carcinoma. N Engl J Med. 324:1–8. 1991. View Article : Google Scholar : PubMed/NCBI

42 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

43 

Kim BR, Dong SM, Seo SH, Lee JH, Lee JM, Lee SH and Rho SB: Lysyl oxidase-like 2 (LOXL2) controls tumor-associated cell proliferation through the interaction with MARCKSL1. Cell Signal. 26:1765–1773. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Anderson C and Kim R: Adjuvant therapy for resected extra-hepatic cholangiocarcinoma: A review of the literature and future directions. Cancer Treat Rev. 35:322–327. 2009. View Article : Google Scholar : PubMed/NCBI

45 

DeOliveira ML, Cunningham SC, Cameron JL, Kamangar F, Winter JM, Lillemoe KD, Choti MA, Yeo CJ and Schulick RD: Cholangiocarcinoma: Thirty-one-year experience with 564 patients at a single institution. Ann Surg. 245:755–762. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Yoshikawa D, Ojima H, Iwasaki M, Hiraoka N, Kosuge T, Kasai S, Hirohashi S and Shibata T: Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma. Br J Cancer. 98:418–425. 2008. View Article : Google Scholar

47 

Glaser SS, Gaudio E and Alpini G: Vascular factors, angiogenesis and biliary tract disease. Curr Opin Gastroenterol. 26:246–250. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Xin M, Davis CA, Molkentin JD, Lien CL, Duncan SA, Richardson JA and Olson EN: A threshold of GATA4 and GATA6 expression is required for cardiovascular development. Proc Natl Acad Sci USA. 103:11189–11194. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Pierre M, Yoshimoto M, Huang L, Richardson M and Yoder MC: VEGF and IHH rescue definitive hematopoiesis in Gata-4 and Gata-6-deficient murine embryoid bodies. Exp Hematol. 37:1038–1053. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Kawasaki Y, Matsumura K, Miyamoto M, Tsuji S, Okuno M, Suda S, Hiyoshi M, Kitayama J and Akiyama T: REG4 is a transcriptional target of GATA6 and is essential for colorectal tumorigenesis. Sci Rep. 5:142912015. View Article : Google Scholar : PubMed/NCBI

51 

Chia NY, Deng N, Das K, Huang D, Hu L, Zhu Y, Lim KH, Lee MH, Wu J, Sam XX, et al: Regulatory crosstalk between lineage-survival oncogenes KLF5, GATA4 and GATA6 cooperatively promotes gastric cancer development. Gut. 64:707–719. 2015. View Article : Google Scholar

52 

Saito H, Papaconstantinou J, Sato H and Goldstein S: Regulation of a novel gene encoding a lysyl oxidase-related protein in cellular adhesion and senescence. J Biol Chem. 272:8157–8160. 1997. View Article : Google Scholar : PubMed/NCBI

53 

Ahn SG, Dong SM, Oshima A, Kim WH, Lee HM, Lee SA, Kwon SH, Lee JH, Lee JM, Jeong J, et al: LOXL2 expression is associated with invasiveness and negatively influences survival in breast cancer patients. Breast Cancer Res Treat. 141:89–99. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Peinado H, Moreno-Bueno G, Hardisson D, Pérez-Gómez E, Santos V, Mendiola M, de Diego JI, Nistal M, Quintanilla M, Portillo F, et al: Lysyl oxidase-like 2 as a new poor prognosis marker of squamous cell carcinomas. Cancer Res. 68:4541–4550. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Peng L, Ran YL, Hu H, Yu L, Liu Q, Zhou Z, Sun YM, Sun LC, Pan J, Sun LX, et al: Secreted LOXL2 is a novel therapeutic target that promotes gastric cancer metastasis via the Src/FAK pathway. Carcinogenesis. 30:1660–1669. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Bignon M, Pichol-Thievend C, Hardouin J, Malbouyres M, Bréchot N, Nasciutti L, Barret A, Teillon J, Guillon E, Etienne E, et al: Lysyl oxidase-like protein-2 regulates sprouting angiogenesis and type IV collagen assembly in the endothelial basement membrane. Blood. 118:3979–3989. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 55 Issue 3

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Peng, T., Deng, X., Tian, F., Li, Z., Jiang, P., Zhao, X. ... Wang, S. (2019). The interaction of LOXL2 with GATA6 induces VEGFA expression and angiogenesis in cholangiocarcinoma. International Journal of Oncology, 55, 657-670. https://doi.org/10.3892/ijo.2019.4837
MLA
Peng, T., Deng, X., Tian, F., Li, Z., Jiang, P., Zhao, X., Chen, G., Chen, Y., Zheng, P., Li, D., Wang, S."The interaction of LOXL2 with GATA6 induces VEGFA expression and angiogenesis in cholangiocarcinoma". International Journal of Oncology 55.3 (2019): 657-670.
Chicago
Peng, T., Deng, X., Tian, F., Li, Z., Jiang, P., Zhao, X., Chen, G., Chen, Y., Zheng, P., Li, D., Wang, S."The interaction of LOXL2 with GATA6 induces VEGFA expression and angiogenesis in cholangiocarcinoma". International Journal of Oncology 55, no. 3 (2019): 657-670. https://doi.org/10.3892/ijo.2019.4837