Open Access

RAC2 acts as a prognostic biomarker and promotes the progression of clear cell renal cell carcinoma

  • Authors:
    • Yuenan Liu
    • Gong Cheng
    • Zhengshuai Song
    • Tianbo Xu
    • Hailong Ruan
    • Qi Cao
    • Keshan Wang
    • Lin Bao
    • Jingchong Liu
    • Lijie Zhou
    • Di Liu
    • Hongmei Yang
    • Ke Chen
    • Xiaoping Zhang
  • View Affiliations

  • Published online on: July 26, 2019     https://doi.org/10.3892/ijo.2019.4849
  • Pages: 645-656
  • Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

As one of the most commonly reported malignancies of the urinary system, clear cell renal cell carcinoma (ccRCC) is an advanced metastatic tumor with high mortality rates. The Rac family small GTPase 2 (RAC2) is a member of the Rho GTPases. Although Rho GTPases play an important role in numerous different types of tumor, whether they have functions in ccRCC remains uncertain. The present study utilized bioinformatics analyses in order to compare the expression levels of RAC2 in ccRCC tumors vs. adjacent tissues, and assessed the association between RAC2 expression and clinicopathological parameters. Furthermore, reverse transcription‑quantitative PCR, western blotting and immunohistochemistry assays were performed to validate RAC2 expression levels in human ccRCC tissues and cell lines. Functional experiments were also conducted in order to identify the roles of RAC2 in vitro. The results revealed that RAC2 was upregulated in ccRCC tissues and cell lines. In addition, elevated expression levels of RAC2 were significantly associated with a poor overall survival (P=0.0061), higher Tumor‑Node‑Metastasis stage and worse G grade. Receiver operating characteristic analysis indicated that high expression levels of RAC2 could be a diagnostic index for ccRCC (area under the curve, 0.9095; P<0.0001). Furthermore, knockdown of RAC2 in vitro attenuated the proliferation, migration and invasion of renal carcinoma cells. In conclusion, the results of the present study demonstrated that RAC2 may act as a promising prognostic and diagnostic biomarker of ccRCC, and could be considered as a potential therapeutic target for treating ccRCC.

References

1 

Moch H, Cubilla AL, Humphrey PA, Reuter VE and Ulbright TM: The 2016 WHO classification of tumours of the urinary system and male genital organs-Part A: Renal, penile, and testicular tumours. Eur Urol. 70:93–105. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Rini BI and Atkins MB: Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol. 10:992–1000. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Gong J, Maia MC, Dizman N, Govindarajan A and Pal SK: Metastasis in renal cell carcinoma: Biology and implications for therapy. Asian J Urol. 3:286–292. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Song Z, Cao Q, Ruan H, Yang H, Wang K, Bao L, Cheng G, Xu T, Xiao H, Wang C, et al: RCAN1.4 acts as a suppressor of cancer progression and sunitinib resistance in clear cell renal cell carcinoma. Exp Cell Res. 372:118–128. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Pichler M, Hutterer GC, Chromecki TF, Jesche J, Kampel-Kettner K, Rehak P, Pummer K and Zigeuner R: External validation of the leibovich prognosis score for nonmetastatic clear cell renal cell carcinoma at a single European center applying routine pathology. J Urology. 186:1773–1777. 2011. View Article : Google Scholar

7 

Novara G, Ficarra V, Antonelli A, Artibani W, Bertini R, Carini M, Cosciani Cunico S, Imbimbo C, Longo N, Martignoni G, et al: Validation of the 2009 TNM version in a large multi-institutional cohort of patients treated for renal cell carcinoma: Are further improvements needed? Eur Urol. 58:588–595. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Bergers G and Hanahan D: Modes of resistance to anti-angio-genic therapy. Nat Rev Cancer. 8:592–603. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Lai YJ, Tsai JC, Tseng YT, Wu MS, Liu WS, Lam HI, Yu JH, Nozell SE and Benveniste EN: Small G protein Rac GTPases regulate the maintenance of glioblastoma stem-like cells in vitro and in vivo. Oncotarget. 8:1803–18049. 2017. View Article : Google Scholar

10 

Bustelo XR, Sauzeau V and Berenjeno IM: GTP-binding proteins of the Rho/Rac family: Regulation, effectors and functions in vivo. Bioessays. 29:356–370. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Cancelas JA: On how Rac controls hematopoietic stem cell activity. Transfusion. 51(Suppl 4): 153S–159S. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Aspenstrom P, Fransson A and Saras J: Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J. 377:327–337. 2004. View Article : Google Scholar

13 

Ridley AJ, Paterson HF, Johnston CL, Diekmann D and Hall A: The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 70:401–410. 1992. View Article : Google Scholar : PubMed/NCBI

14 

Chen X, Zhang JX, Luo JH, Wu S, Yuan GJ, Ma NF, Feng Y, Cai MY, Chen RX, Lu J, et al: CSTF2-induced shortening of the RAC1 3'UTR promotes the pathogenesis of urothelial carcinoma of the bladder. Cancer Res. 78:5848–5862. 2018.PubMed/NCBI

15 

Pei H, Guo Z, Wang Z, Dai Y, Zheng L, Zhu L, Zhang J, Hu W, Nie J, Mao W, et al: RAC2 promotes abnormal proliferation of quiescent cells by enhanced JUNB expression via the MAL-SRF pathway. Cell Cycle. 17:1115–1123. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Mack NA, Whalley HJ, Castillo-Lluva S and Malliri A: The diverse roles of Rac signaling in tumorigenesis. Cell Cycle. 10:1571–1581. 2011. View Article : Google Scholar : PubMed/NCBI

17 

RAC2 Rac family small GTPase 2 [Homo sapiens (human)]. (Gene ID: 5880). NCBI; 2019, urihttps://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=5880simplehttps://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=5880 Accessed July 7 , 2019.

18 

Filippi MD, Harris CE, Meller J, Gu Y, Zheng Y and Williams DA: Localization of Rac2 via the C terminus and aspartic acid 150 specifies superoxide generation, actin polarity and chemotaxis in neutrophils. Nat Immunol. 5:744–751. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Croker BA, Handman E, Hayball JD, Baldwin TM, Voigt V, Cluse LA, Yang FC, Williams DA and Roberts AW: Rac2-deficient mice display perturbed T-cell distribution and chemotaxis, but only minor abnormalities in T(H)1 responses. Immunol Cell Biol. 80:231–240. 2002. View Article : Google Scholar : PubMed/NCBI

20 

Yang FC, Kapur R, King AJ, Tao W, Kim C, Borneo J, Breese R, Marshall M, Dinauer MC and Williams DA: Rac2 stimulates Akt activation affecting BAD/Bcl-XL expression while mediating survival and actin function in primary mast cells. Immunity. 12:557–568. 2000. View Article : Google Scholar : PubMed/NCBI

21 

Fuhrman SA, Lasky LC and Limas C: Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol. 6:655–663. 1982. View Article : Google Scholar : PubMed/NCBI

22 

Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL and Trotti A: AJCC cancer staging manual. 7th edition. Springer Verlag; New York, NY: pp. 547–560. 2009

23 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

24 

Cao Q, Ruan H, Wang K, Song Z, Bao L, Xu T, Xiao H, Wang C, Cheng G, Tong J, et al: Overexpression of PLIN2 is a prognostic marker and attenuates tumor progression in clear cell renal cell carcinoma. Int J Oncol. 53:137–147. 2018.PubMed/NCBI

25 

Liu R, Qin X, Ji C, Zeng W, Yang Y and Tan W: Pygopus 2 promotes kidney cancer OS-RC-2 cells proliferation and invasion in vitro and in vivo. Asian J Urol. 2:151–157. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Yusenko MV, Zubakov D and Kovacs G: Gene expression profiling of chromophobe renal cell carcinomas and renal oncocytomas by Affymetrix GeneChip using pooled and individual tumours. Int J Biol Sci. 5:517–527. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Jones J, Otu H, Spentzos D, Kolia S, Inan M, Beecken WD, Fellbaum C, Gu X, Joseph M, Pantuck AJ, et al: Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res. 11:5730–5739. 2005. View Article : Google Scholar : PubMed/NCBI

28 

Lenburg ME, Liou LS, Gerry NP, Frampton GM, Cohen HT and Christman MF: Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data. BMC Cancer. 3:312003. View Article : Google Scholar : PubMed/NCBI

29 

Gumz ML, Zou H, Kreinest PA, Childs AC, Belmonte LS, LeGrand SN, Wu KJ, Luxon BA, Sinha M, Parker AS, et al: Secreted frizzled-related protein 1 loss contributes to tumor phenotype of clear cell renal cell carcinoma. Clin Cancer Res. 13:4740–4749. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Patard JJ, Leray E, Rodriguez A, Rioux-Leclercq N, Guillé F and Lobel B: Correlation between symptom graduation, tumor characteristics and survival in renal cell carcinoma. Eur Urol. 44:226–232. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Lee CT, Katz J, Fearn PA and Russo P: Mode of presentation of renal cell carcinoma provides prognostic information. Urol Oncol. 7:135–140. 2002. View Article : Google Scholar : PubMed/NCBI

33 

Campbell SC, Novick AC, Belldegrun A, Blute ML, Chow GK, Derweesh IH, Faraday MM, Kaouk JH, Leveillee RJ, Matin SF, et al: Guideline for management of the clinical T1 renal mass. J Urol. 182:1271–1279. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, et al: Nivolumab versus Everolimus in advanced renal-cell carcinoma. New Engl J Med. 373:1803–1813. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Dempke WCM, Fenchel K, Uciechowski P and Dale SP: Second- and third-generation drugs for immuno-oncology treatment-the more the better? Eur J Cancer. 74:55–72. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Li QK, Pavlovich CP, Zhang H, Kinsinger CR and Chan DW: Challenges and opportunities in the proteomic characterization of clear cell renal cell carcinoma (ccRCC): A critical step towards the personalized care of renal cancers. Semin Cancer Biol. 55:8–15. 2019. View Article : Google Scholar

37 

Wang K, Ruan H, Song Z, Cao Q, Bao L, Liu D, Xu T, Xiao H, Wang C, Cheng G, et al: PLIN3 is up-regulated and correlates with poor prognosis in clear cell renal cell carcinoma. Urol Oncol. 36:343.e9–343.e19. 2018. View Article : Google Scholar

38 

Olson MF: Rho GTPases, their post-translational modifications, disease-associated mutations and pharmacological inhibitors. Small GTPases. 9:203–215. 2018. View Article : Google Scholar :

39 

Kazanietz MG and Caloca MJ: The Rac GTPase in cancer: From old concepts to new paradigms. Cancer Res. 77:5445–5451. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Cardama GA, Gonzalez N, Maggio J, Menna PL and Gomez DE: Rho GTPases as therapeutic targets in cancer (Review). Int J Oncol. 51:1025–1034. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Casado-Medrano V, Baker MJ, Lopez-Haber C, Cooke M, Wang S, Caloca MJ and Kazanietz MG: The role of Rac in tumor susceptibility and disease progression: From biochemistry to the clinic. Biochem Soc Trans. 46:1003–1012. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Kobayashi T, Inoue T, Shimizu Y, Terada N, Maeno A, Kajita Y, Yamasaki T, Kamba T, Toda Y, Mikami Y, et al: Activation of Rac1 is closely related to androgen-independent cell proliferation of prostate cancer cells both in vitro and in vivo. Mol Endocrinol. 24:722–734. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Kamai T, Yamanishi T, Shirataki H, Takagi K, Asami H, Ito Y and Yoshida K: Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer. Clin Cancer Res. 10:4799–4805. 2004. View Article : Google Scholar : PubMed/NCBI

44 

Leng R, Liao G, Wang H, Kuang J and Tang L: Rac1 expression in epithelial ovarian cancer: Effect on cell EMT and clinical outcome. Med Oncol. 32:3292015. View Article : Google Scholar : PubMed/NCBI

45 

Zhou Y, Liao Q, Han Y, Chen J, Liu Z, Ling H, Zhang J, Yang W, Oyang L, Xia L, et al: Rac1 overexpression is correlated with epithelial mesenchymal transition and predicts poor prognosis in non-small cell lung cancer. J Cancer. 7:2100–2109. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Ji J, Feng X, Shi M, Cai Q, Yu Y, Zhu Z and Zhang J: Rac1 is correlated with aggressiveness and a potential therapeutic target for gastric cancer. Int J Oncol. 46:1343–1353. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Justilien V, Ali SA, Jamieson L, Yin N, Cox AD, Der CJ, Murray NR and Fields AP: Ect2-Dependent rRNA synthesis is required for KRAS-TRP53-driven lung adenocarcinoma. Cancer Cell. 31:256–269. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Baker MJ, Cooke M and Kazanietz MG: Nuclear PKC iota-ECT2-Rac1 and ribosome biogenesis: A novel axis in lung tumorigenesis. Cancer Cell. 31:167–169. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Gao Y, Dickerson JB, Guo F, Zheng J and Zheng Y: Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA. 101:7618–7623. 2004. View Article : Google Scholar : PubMed/NCBI

50 

Troeger A and Williams DA: Hematopoietic-specific Rho GTPases Rac2 and RhoH and human blood disorders. Exp Cell Res. 319:2375–2383. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Mizukawa B, Wei J, Shrestha M, Wunderlich M, Chou FS, Griesinger A, Harris CE, Kumar AR, Zheng Y, Williams DA and Mulloy JC: Inhibition of Rac GTPase signaling and downstream prosurvival Bcl-2 proteins as combination targeted therapy in MLL-AF9 leukemia. Blood. 118:5235–5245. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Gu Y and Williams DA: RAC2 GTPase deficiency and myeloid cell dysfunction in human and mouse. J Pediat Hematol Oncol. 24:791–794. 2002. View Article : Google Scholar

Related Articles

Journal Cover

September 2019
Volume 55 Issue 3

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, Y., Cheng, G., Song, Z., Xu, T., Ruan, H., Cao, Q. ... Zhang, X. (2019). RAC2 acts as a prognostic biomarker and promotes the progression of clear cell renal cell carcinoma. International Journal of Oncology, 55, 645-656. https://doi.org/10.3892/ijo.2019.4849
MLA
Liu, Y., Cheng, G., Song, Z., Xu, T., Ruan, H., Cao, Q., Wang, K., Bao, L., Liu, J., Zhou, L., Liu, D., Yang, H., Chen, K., Zhang, X."RAC2 acts as a prognostic biomarker and promotes the progression of clear cell renal cell carcinoma". International Journal of Oncology 55.3 (2019): 645-656.
Chicago
Liu, Y., Cheng, G., Song, Z., Xu, T., Ruan, H., Cao, Q., Wang, K., Bao, L., Liu, J., Zhou, L., Liu, D., Yang, H., Chen, K., Zhang, X."RAC2 acts as a prognostic biomarker and promotes the progression of clear cell renal cell carcinoma". International Journal of Oncology 55, no. 3 (2019): 645-656. https://doi.org/10.3892/ijo.2019.4849