Open Access

Mechanosensitive ion channel Piezo1 promotes prostate cancer development through the activation of the Akt/mTOR pathway and acceleration of cell cycle

  • Authors:
    • Yu Han
    • Chao Liu
    • Dongfang Zhang
    • Hongchao Men
    • Lifang Huo
    • Qiaowei Geng
    • Shengnan Wang
    • Yiting Gao
    • Wei Zhang
    • Yongjian Zhang
    • Zhanfeng Jia
  • View Affiliations

  • Published online on: July 15, 2019     https://doi.org/10.3892/ijo.2019.4839
  • Pages: 629-644
  • Copyright: © Han et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Prostate cancer is one of the most common types of cancer affecting men worldwide; however, its etiology and pathological mechanisms remain poorly understood. Mechanical stimulation plays a key role in prostate cancer development. Piezo type mechanosensitive ion channel component 1 (Piezo1), which functions as a cell sensor and transducer of mechanical stimuli, may have a crucial role in the development of prostate cancer. In the present study, the expression of the Piezo1 channel was demonstrated to be significantly elevated in prostate cancer cell lines and in human prostate malignant tumor tissues. Downregulation of Piezo1 significantly suppressed the viability, proliferation and migration of prostate cancer cells in vitro, and inhibited prostate tumor growth in vivo. The activation of the Akt/mTOR pathway or acceleration of cell cycle progression from G0/G1 to S phase may downstream consequences of Piezo 1 signal pathway activation. Downregulation of Piezo1 considerably suppressed Ca2+ signal increments, inhibited the phosphorylation of Akt and mTOR and arrested the cell cycle of prostate cancer cells at G0/G1 phase in while inhibiting the activation of CDK4 and cyclin D1. Taken together, these findings suggest that Piezo1 channels have a crucial role in prostate cancer development and may, therefore, be a novel therapeutic target in the treatment of prostate cancer.

References

1 

Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, Dicker DJ, Chimed-Orchir O, Dandona R, Dandona L, et al: Regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015:. A systematic analysis for the global burden of disease study JAMA Oncol. 3:524–548. 2017.

2 

Siegel RL, Miller KD and Jemal A: Cancer Statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Bostwick DG, Burke HB, Djakiew D, Euling S, Ho SM, Landolph J, Morrison H, Sonawane B, Shifflett T, Waters DJ, et al: Human prostate cancer risk factors Cancer. 101(Suppl): 2371–2490. 2004.

4 

DeMarzo AM, Nelson WG, Isaacs WB and Epstein JI: Pathological and molecular aspects of prostate cancer. Lancet. 361:955–964. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Howard N, Clementino M, Kim D, Wang L, Verma A, Shi X, Zhang Z and DiPaola RS: New developments in mechanisms of prostate cancer progression. Semin Cancer Biol. Sep 10–2018.(Epub ahead of print): S1044-579X(18)30079-8, 2018. View Article : Google Scholar : PubMed/NCBI

6 

Butcher DT, Alliston T and Weaver VM: A tense situation: Forcing tumour progression. Nat Rev Cancer. 9:108–122. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Yu H, Mouw JK and Weaver VM: Forcing form and function: Biomechanical regulation of tumor evolution. Trends Cell Biol. 21:47–56. 2011. View Article : Google Scholar :

8 

Hoyt K, Castaneda B, Zhang M, Nigwekar P, di Sant'agnese PA, Joseph JV, Strang J, Rubens DJ and Parker KJ: Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark. 4:213–225. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Hegarty PK, Watson RW, Coffey RN, Webber MM and Fitzpatrick JM: Effects of cyclic stretch on prostatic cells in culture. J Urol. 168:2291–2295. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Wadhera P: An introduction to acinar pressures in BPH and prostate cancer. Nat Rev Urol. 10:358–366. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Sottnik JL, Dai J, Zhang H, Campbell B and Keller ET: Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases. Cancer Res. 75:2151–2158. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE and Patapoutian A: Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 330:55–60. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Wu J, Lewis AH and Grandl J: Touch, tension, and transduction - the function and regulation of Piezo ion channels. Trends Biochem Sci. 42:57–71. 2017. View Article : Google Scholar

14 

Ranade SS, Woo SH, Dubin AE, Moshourab RA, Wetzel C, Petrus M, Mathur J, Bégay V, Coste B, Mainquist J, et al: Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature. 516:121–125. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Ikeda R, Cha M, Ling J, Jia Z, Coyle D and Gu JG: Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses. Cell. 157:664–675. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ, Sedo A, Hyman AJ, McKeown L, Young RS, et al: Piezo1 integration of vascular architecture with physiological force. Nature. 515:279–282. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Nonomura K, Woo SH, Chang RB, Gillich A, Qiu Z, Francisco AG, Ranade SS, Liberles SD and Patapoutian A: Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature. 541:176–181. 2017. View Article : Google Scholar :

18 

Murthy SE, Dubin AE and Patapoutian A: Piezos thrive under pressure: Mechanically activated ion channels in health and disease. Nat Rev Mol Cell Biol. 18:771–783. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Ranade SS, Qiu Z, Woo SH, Hur SS, Murthy SE, Cahalan SM, Xu J, Mathur J, Bandell M, Coste B, et al: Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci USA. 111:10347–10352. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Gudipaty SA, Lindblom J, Loftus PD, Redd MJ, Edes K, Davey CF, Krishnegowda V and Rosenblatt J: Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature. 543:118–121. 2017. View Article : Google Scholar : PubMed/NCBI

21 

He L, Si G, Huang J, Samuel ADT and Perrimon N: Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel. Nature. 555:103–106. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Yang XN, Lu YP, Liu JJ, Huang JK, Liu YP, Xiao CX, Jazag A, Ren JL and Guleng B: Piezo1 is as a novel trefoil factor family 1 binding protein that promotes gastric cancer cell mobility in vitro. Dig Dis Sci. 59:1428–1435. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Zhang T, Chi S, Jiang F, Zhao Q and Xiao B: A protein interaction mechanism for suppressing the mechanosensitive Piezo channels. Nat Commun. 8:17972017. View Article : Google Scholar : PubMed/NCBI

24 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods. 25:402–408. 2001. View Article : Google Scholar

25 

Shah RB and Zhou M: Recent advances in prostate cancer pathology: Gleason grading and beyond. Pathol Int. 66:260–272. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Booy EP, Henson ES and Gibson SB: Epidermal growth factor regulates Mcl-1 expression through the MAPK-Elk-1 signalling pathway contributing to cell survival in breast cancer. Oncogene. 30:2367–2378. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK and Varambally S: UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 19:649–658. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Bae C, Sachs F and Gottlieb PA: The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry. 50:6295–6300. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Zhong W, Peng J, He H, Wu D, Han Z, Bi X and Dai Q: Ki-67 and PCNA expression in prostate cancer and benign prostatic hyperplasia. Clin Invest Med. 31:E8–E15. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Gnanasambandam R, Bae C, Gottlieb PA and Sachs F: Ionic selectivity and permeation properties of human PIEZO1 channels. PLoS One. 10:e01255032015. View Article : Google Scholar : PubMed/NCBI

31 

Roderick HL and Cook SJ: Ca2+ signalling checkpoints in cancer: Remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer. 8:361–375. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Monteith GR, Prevarskaya N and Roberts-Thomson SJ: The calcium-cancer signalling nexus. Nat Rev Cancer. 17:367–380. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Mendoza MC, Er EE and Blenis J: The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends Biochem Sci. 36:320–328. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Agell N, Bachs O, Rocamora N and Villalonga P: Modulation of the Ras/Raf/MEK/ERK pathway by Ca2+, and calmodulin. Cell Signal. 14:649–54. 2002. View Article : Google Scholar : PubMed/NCBI

35 

Gocher AM, Azabdaftari G, Euscher LM, Dai S, Karacosta LG, Franke TF and Edelman AM: Akt activation by Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) in ovarian cancer cells. J Biol Chem. 292:14188–14204. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Zhang R, Zhu Y, Dong X, Liu B, Zhang N, Wang X, Liu L, Xu C, Huang S and Chen L: Celastrol Attenuates Cadmium-Induced Neuronal Apoptosis via Inhibiting Ca2+ -CaMKII-Dependent Akt/mTOR Pathway. J Cell Physiol. 232:2145–2157. 2017. View Article : Google Scholar

37 

Li C, Rezania S, Kammerer S, Sokolowski A, Devaney T, Gorischek A, Jahn S, Hackl H, Groschner K, Windpassinger C, et al: Piezo1 forms mechanosensitive ion channels in the human MCF-7 breast cancer cell line. Sci Rep. 5:83642015. View Article : Google Scholar : PubMed/NCBI

38 

Chen X, Wanggou S, Bodalia A, Zhu M, Dong W, Fan JJ, Yin WC, Min HK, Hu M, Draghici D, et al: A feedforward mechanism mediated by mechanosensitive ion channel PIEZO1 and tissue mechanics promotes glioma aggression. Neuron. 100:799–815.e7. 2018. View Article : Google Scholar : PubMed/NCBI

39 

McHugh BJ, Murdoch A, Haslett C and Sethi T: Loss of the integrin-activating transmembrane protein Fam38A (Piezo1) promotes a switch to a reduced integrin-dependent mode of cell migration. PLoS One. 7:e403462012. View Article : Google Scholar : PubMed/NCBI

40 

Spier I, Kerick M, Drichel D, Horpaopan S, Altmüller J, Laner A, Holzapfel S, Peters S, Adam R, Zhao B, et al: Exome sequencing identifies potential novel candidate genes in patients with unexplained colorectal adenomatous polyposis. Fam Cancer. 15:281–288. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Miyamoto T, Mochizuki T, Nakagomi H, Kira S, Watanabe M, Takayama Y, Suzuki Y, Koizumi S, Takeda M and Tominaga M: Functional role for Piezo1 in stretch-evoked Ca2 influx and ATP release in urothelial cell cultures. J Biol Chem. 289:16565–16575. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Saxton RA and Sabatini DM: mTOR Signaling in growth, metabolism, and disease. Cell. 168:960–976. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Wang S, Chennupati R, Kaur H, Iring A, Wettschureck N and Offermanns S: Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest. 126:4527–4536. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Vivanco I and Sawyers CL: The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat Rev Cancer. 2:489–501. 2002. View Article : Google Scholar : PubMed/NCBI

45 

Yano S, Tokumitsu H and Soderling TR: Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature. 396:584–587. 1998. View Article : Google Scholar : PubMed/NCBI

46 

Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N, Okado H, Miwa A, Kurihara H, Nakazato Y, Tamura M, et al: Blockage of Ca(2+)-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat Med. 8:971–978. 2002. View Article : Google Scholar : PubMed/NCBI

47 

Ishiuchi S, Yoshida Y, Sugawara K, Aihara M, Ohtani T, Watanabe T, Saito N, Tsuzuki K, Okado H, Miwa A, et al: Ca2+-permeable AMPA receptors regulate growth of human glioblastoma via Akt activation. J Neurosci. 27:7987–8001. 2007. View Article : Google Scholar : PubMed/NCBI

48 

Valerie NC, Dziegielewska B, Hosing AS, Augustin E, Gray LS, Brautigan DL, Larner JM and Dziegielewski J: Inhibition of T-type calcium channels disrupts Akt signaling and promotes apoptosis in glioblastoma cells. Biochem Pharmacol. 85:888–897. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Gao Q, Cooper PR, Walmsley AD and Scheven BA: Role of Piezo channels in ultrasound-stimulated dental stem cells. J Endod. 43:1130–1136. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Zimmermann S and Moelling K: Phosphorylation and regulation of Raf by Akt (protein kinase B). Science. 286:1741–1744. 1999. View Article : Google Scholar : PubMed/NCBI

51 

Diehl JA, Cheng M, Roussel MF and Sherr CJ: Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12:3499–3511. 1998. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 55 Issue 3

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Han, Y., Liu, C., Zhang, D., Men, H., Huo, L., Geng, Q. ... Jia, Z. (2019). Mechanosensitive ion channel Piezo1 promotes prostate cancer development through the activation of the Akt/mTOR pathway and acceleration of cell cycle. International Journal of Oncology, 55, 629-644. https://doi.org/10.3892/ijo.2019.4839
MLA
Han, Y., Liu, C., Zhang, D., Men, H., Huo, L., Geng, Q., Wang, S., Gao, Y., Zhang, W., Zhang, Y., Jia, Z."Mechanosensitive ion channel Piezo1 promotes prostate cancer development through the activation of the Akt/mTOR pathway and acceleration of cell cycle". International Journal of Oncology 55.3 (2019): 629-644.
Chicago
Han, Y., Liu, C., Zhang, D., Men, H., Huo, L., Geng, Q., Wang, S., Gao, Y., Zhang, W., Zhang, Y., Jia, Z."Mechanosensitive ion channel Piezo1 promotes prostate cancer development through the activation of the Akt/mTOR pathway and acceleration of cell cycle". International Journal of Oncology 55, no. 3 (2019): 629-644. https://doi.org/10.3892/ijo.2019.4839