Open Access

A systematic review of the prevalence of DNA damage response gene mutations in prostate cancer

  • Authors:
    • Shona H. Lang
    • Stephanie L. Swift
    • Heath White
    • Kate Misso
    • Jos Kleijnen
    • Ruben G.W. Quek
  • View Affiliations

  • Published online on: July 16, 2019     https://doi.org/10.3892/ijo.2019.4842
  • Pages: 597-616
  • Copyright: © Lang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Several ongoing international prostate cancer (PC) clinical trials are exploring therapies that target the DNA damage response (DDR) pathway. This systematic review summarizes the prevalence of DDR mutation carriers in the unselected (general) PC and familial PC populations. A total of 11 electronic databases, 10 conference proceedings, and grey literature sources were searched from their inception to December 2017. Studies reporting the prevalence of somatic and/or germline DDR mutations were summarized. Metastatic PC (mPC), castration‑resistant PC (CRPC) and metastatic CRPC (mCRPC) subgroups were included. A total of 11,648 records were retrieved, and 80 studies (103 records) across all PC populations were included; 59 records were of unselected PC and 13 records of familial PC. Most data were available for DDR panels (n=12 studies), ataxia telangiectasia mutated (ATM; n=13), breast cancer susceptibility gene (BRCA)1 (n=14) and BRCA2 (n=20). ATM, BRCA2 and partner and localizer of BRCA2 (PALB2) had the highest mutation rates (≥4%). Median prevalence rates for DDR germline mutations were 18.6% in PC (range, 17.2‑19%; three studies, n=1,712), 11.6% in mPC (range, 11.4‑11.8%; two studies, n=1,261) and 8.3% in mCRPC (range, 7.5‑9.1%; two studies, n=738). Median prevalence rates for DDR somatic mutations were 10.7% in PC (range, 4.9‑22%; three studies, n=680), 13.2% in mPC (range, 10‑16.4%; two studies, n=105) and not reported (NR) in mCRPC. The prevalence of DDR germline and/or somatic mutations was 27% in PC (one study, n=221), 22.67% in mCRPC (one study, n=150) and NR in mPC. In familial PC, median mutation prevalence was 12.1% (range, 7.3‑16.9%) for germline DDR (two studies, n=315) and 3.7% (range, 1.3‑7.9%) for BRCA2 (six studies, n=945). In total, 88% of studies were at a high risk of bias. The prevalence of DDR gene mutations in PC varied widely within somatic subgroups depending on study size, genetic screening techniques, DDR mutation definition and PC diagnosis; somatic and/or germline DDR mutation prevalence was in the range of 23‑27% in PC. These findings support DDR mutation testing for all patients with PC (including those with mCRPC). With the advent of the latest clinical practice PC guidelines highlighting the importance of DDR mutation screening, and ongoing mCRPC clinical trials evaluating DDR mutation‑targeted drugs, future larger epidemiological studies are warranted to further quantify the international burden of DDR mutations in PC.

References

1 

Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin D, Forman D and Bray F: GLOBOCAN 2012 v10, Cancer Incidence and Mortality Worldwide IARC CancerBase No. 11. International Agency for Research on Cancer; Lyon: 2013, http://globocan.iarc.frurisimplehttp://globocan.iarc.fr. Accessed September 3 , 2018.

2 

Castro E, Mateo J, Olmos D and de Bono JS: Targeting DNA repair: The role of PARP inhibition in the treatment of castration-resistant prostate cancer. Cancer J. 22:353–356. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Lord CJ and Ashworth A: PARP inhibitors: Synthetic lethality in the clinic. Science. 355:1152–1158. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC, Attard G, et al: Integrative clinical genomics of advanced prostate cancer. Cell. 161:1215–1228. 2015. View Article : Google Scholar : PubMed/NCBI

5 

National Comprehensive Cancer Network Inc.: NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Prostate cancer (Version 4. 2018 8/15/18). NCCN; Fort Washington, PA: 2018, https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdfurisimplehttps://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. Accessed September 3 , 2018.

6 

Giri VN, Knudsen KE, Kelly WK, Abida W, Andriole GL, Bangma CH, Bekelman JE, Benson MC, Blanco A, Burnett A, et al: Role of genetic testing for inherited prostate cancer risk: Philadelphia Prostate Cancer Consensus Conference 2017. J Clin Oncol. 36:414–424. 2018. View Article : Google Scholar :

7 

Gillessen S, Attard G, Beer TM, Beltran H, Bossi A, Bristow R, Carver B, Castellano D, Chung BH, Clarke N, et al: Management of patients with advanced prostate cancer: The report of the Advanced Prostate Cancer Consensus Conference APCCC 2017. Eur Urol. 73:178–211. 2018. View Article : Google Scholar

8 

Higgins JPT and Green S: Cochrane handbook for systematic reviews of interventions [Internet] The Cochrane Collaboration, Version 5.1.0. updated March 2011. 2011, http://handbook.cochrane.org/urisimplehttp://handbook.cochrane.org/. Accessed November 22 , 2017.

9 

Centre for Reviews and Dissemination Systematic Reviews: CRD's guidance for undertaking reviews in health care. University of York; York: 2017, http://www.york.ac.uk/inst/crd/SysRev/!SSL!/WebHelp/SysRev3.htmurisimplehttp://www.york.ac.uk/inst/crd/SysRev/!SSL!/WebHelp/SysRev3.htm. Accessed November 22 , 2017.

10 

Munn Z, Moola S, Lisy K, Riitano D and Tufanaru C: Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int J Evid-Based Healthc. 13:147–153. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Ioannidis JPA: Why most published research findings are false. PLoS Med. 2:e1242005. View Article : Google Scholar : PubMed/NCBI

12 

Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES and Munafò MR: Power failure: Why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 14:365–376. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Timms KM, Cuzick J, Neff C, Reid J, Solimeno C, Sangale Z, Pruss D, Gutin A, Lanchbury JS and Stone S: The molecular landscape of genome instability in prostate cancer. Proceedings of the European Society for Medical Oncology Congress; Copenhagen. 2016, urihttp://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20161109050002300&context=WK%40northernlight.comsimplehttp://discovery.northernlight.com/document.php?datasource=PHE&docid=PE20161109050002300&context=WK%40norther nlight.com urihttps://doi.org/10.1093/annonc/mdw363.63simplehttps://doi.org/10.1093/annonc/mdw363.63. Accessed December 7 , 2017.

14 

Jefferies M, Cox A, Clarke A and Kynaston H: Targeted next-generation sequencing analysis of primary prostate cancer identifies potential therapeutic targets. J Urol. 197(Suppl. 4): e594–e595. 2017. View Article : Google Scholar

15 

Gourdin TS and Lilly MB: Genomic profiling of metastatic prostate cancer through analysis of circulating tumor DNA (ctDNA). J Clin Oncol. 34(Suppl 2): 1742016. View Article : Google Scholar

16 

Pritchard CC, Morrissey C, Kumar A, Zhang X, Smith C, Coleman I, Salipante SJ, Milbank J, Yu M, Grady WM, et al: Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nat Commun. 5:49882014. View Article : Google Scholar : PubMed/NCBI

17 

Abida W, Armenia J, Gopalan A, Brennan R, Walsh M, Barron D, Danila D, Rathkopf D, Morris M, Slovin S, et al: Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precis Oncol. 2017:1–16. 2017.

18 

Abeshouse A, Ahn J, Akbani R, Ally A, Amin S, Andry CD, Annala M, Aprikian A, Armenia J, Arora A, et al: Cancer Genome Atlas Research Network: The molecular taxonomy of primary prostate cancer. Cell. 163:1011–1025. 2015. View Article : Google Scholar

19 

Nicolosi PLW, Michalski ST, Freschi B, O'Leary E, Quintana R, Wilson I, Powers MP and Sartor O: Need for re-evaluation of current guidelines based on results from germline genetic testing in prostate cancer. J Clin Oncol. 35(Suppl 15): 50092017. View Article : Google Scholar

20 

Nelson P, Mateo J, Beltran H, De Sarkar N, Elemento O, Rubin MA, Vinson JN, Filipenko J, Robinson DR, Chinnaiyan AM, et al: Inherited mutations in DNA repair genes in men with metastatic castration-resistant prostate cancer. J Clin Oncol. 34(Suppl 15): 50092016. View Article : Google Scholar

21 

Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, Garofalo A, Gulati R, Carreira S, Eeles R, et al: Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 375:443–453. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Romero Laorden N, Lozano Mejorada R, Piulats Rodriguez J, Vallespin E, Montesa A, Lorente Estelles D, Villaguzman J, Grau G, Rodriquez-Vida A, Ibanez K, et al: 826P - Prevalence and baseline clinico-pathological associations of germline deleterious mutations in DNA repair genes (gmDDR) in a metastatic castration resistant prostate cancer (mCRPC) prospective spanish cohort (PROREPAIR-B study). Presented at European Society for Medical Oncology (ESMO) 2017 Congress; 1-12 Sep 2017; Madrid: Spain. urihttps://cslide.ctimeetingtech.com/library/esmo/browse/search/2yZL#2Bb5p0SKsimplehttps://cslide.ctimeetingtech.com/library/esmo/browse/search/2yZL#2Bb5p0SK Accessed February 28 , 2018.

23 

Struss WJ, Annala M, Warner EW, Beja K, Vandekerkhove G, Wong A, Gleave M, Chi KN and Wyatt AW: Germline DNA repair mutations in metastatic castration-resistant prostate cancer: Therapy response and applicability of circulating tumor DNA. J Clin Oncol. 35(Suppl 6): 1402017. View Article : Google Scholar

24 

Lu C, Xie M, Wendl MC, Wang J, McLellan MD, Leiserson MDM Huang KL, Wyczalkowski MA, Jayasinghe R, Banerjee T, et al: Patterns and functional implications of rare germline variants across 12 cancer types. Nat Commun. 6:100862015. View Article : Google Scholar : PubMed/NCBI

25 

Na R, Zheng SL, Han M, Yu H, Jiang D, Shah S, Ewing CM, Zhang L, Novakovic K, Petkewicz J, et al: Germline mutations in ATM and BRCA1/2 distinguish risk for lethal and indolent prostate cancer and are associated with early age at death. Eur Urol. 71:740–747. 2017. View Article : Google Scholar :

26 

Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC, et al: The mutational landscape of lethal castration-resistant prostate cancer. Nature. 487:239–243. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Manson-Bahr D, Ball R, Gundem G, Sethia K, Mills R, Rochester M, Goody V, Anderson E, O'Meara S, Flather M, et al: Mutation detection in formalin-fixed prostate cancer biopsies taken at the time of diagnosis using next-generation DNA sequencing. J Clin Pathol. 68:212–217. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Evans JR, Zhao SG, Chang SL, Tomlins SA, Erho N, Sboner A, Schiewer MJ, Spratt DE, Kothari V, Klein EA, et al: Patient-level DNA damage and repair pathway profiles and prognosis after prosta-tectomy for high-risk prostate cancer. JAMA Oncol. 2:471–480. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Patel VL, Busch E, D'Amico AV and Rebbeck TR: BRCA2 mutations in prostate cancer assort into cluster regions. Int J Radiat Oncol. 96:E569–E570. 2016. View Article : Google Scholar

30 

Decker B, Karyadi DM, Davis BW, Karlins E, Tillmans LS, Stanford JL, Thibodeau SN and Ostrander EA: Biallelic BRCA2 mutations shape the somatic mutational landscape of aggressive prostate tumors. Am J Hum Genet. 98:818–829. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Castro E, Goh CL, Olmos D, Leongamornlert D, Saunders E, Tymrakiewicz M, Mahmud N, Dadaev T, Govindasami K, Guy M, et al: Correlation of germ-line BRCA2 mutations with aggressive prostate cancer and outcome. J Clin Oncol. 29(Suppl 15): 15172011. View Article : Google Scholar

32 

Leongamornlert D, Mahmud N, Tymrakiewicz M, Saunders E, Dadaev T, Castro E, Goh C, Govindasami K, Guy M, O'Brien L, et al: UKGPCS Collaborators: Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer. 106:1697–1701. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Sonpavde G, Nagy RJ, Sartor AO, Pond GR, Gourdin TS, Nandagopal L, Ledet EM, Agarwal N, Carroll E, Naik G, et al: Circulating tumor (ct)-DNA alterations in metastatic castration-resistant prostate cancer (mCRPC): Association with outcomes and evolution with therapy. J Clin Oncol. 35(Suppl 6): 1492017. View Article : Google Scholar

34 

Lara P, McPherson J, Heyer W, Hartmaier R, DeVere White R, Ching J, Ali S and Dall'Era M: 827P - Comprehensive char-acterization of BRCA1 and BRCA2 alterations in circulating tumor DNA and tumor tissue in men with prostate cancer: Implications for clinical care. Presented at European Society for Medical Oncology (ESMO) 2017 Congress; 1-12 Sep 2017; Madrid: Spain. 2017, https://cslide.ctimeetingtech.com/library/esmo/browse/search/2ape#2Bb5p0Vnurisimplehttps://cslide.ctimeetingtech.com/library/esmo/browse/search/2ape#2Bb5p0Vn. Accessed February 28 , 2018.

35 

Myers CE, Feldman R, Abbott BL, Reddy SK and Castro M: Frequency of BRCA mutations and co-occurring alterations in prostate cancer. J Clin Oncol. 34(Suppl 2): 2892016. View Article : Google Scholar

36 

Akbari MR, Wallis CJD, Toi A, Trachtenberg J, Sun P, Narod SA and Nam RK: The impact of a BRCA2 mutation on mortality from screen-detected prostate cancer. Br J Cancer. 111:1238–1240. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Maier C, Herkommer K, Luedeke M, Rinckleb A, Schrader M and Vogel W: Subgroups of familial and aggressive prostate cancer with considerable frequencies of BRCA2 mutations. Prostate. 74:1444–1451. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Fontugne J, Ramazanoglu S, Knudsen K, De Bono J, Feng F, Sboner A and Rubin M: DNA damage response genes in prostate cancer: Development of a novel targeted sequencing platform. Lab Invest. 95:220A–221A. 2015.

39 

Nicolas E, Arora S, Zhou Y, Serebriiskii IG, Andrake MD, Handorf ED, Bodian DL, Vockley JG, Dunbrack RL, Ross EA, et al: Systematic evaluation of underlying defects in DNA repair as an approach to case-only assessment of familial prostate cancer. Oncotarget. 6:39614–39633. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Armenia J, Wankowicz SAM, Liu D, Gao J, Kundra R, Reznik E, Chatila WK, Chakravarty D, Han GC, Coleman I, et al: PCF/SU2C International Prostate Cancer Dream Team: The long tail of oncogenic drivers in prostate cancer. Nat Genet. 50:645–651. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Leongamornlert D, Saunders E, Dadaev T, Tymrakiewicz M, Goh C, Jugurnauth-Little S, Kozarewa I, Fenwick K, Assiotis I, Barrowdale D, et al: UKGPCS Collaborators: Frequent germline deleterious mutations in DNA repair genes in familial prostate cancer cases are associated with advanced disease. Br J Cancer. 110:1663–1672. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Hayano T, Matsui H, Nakaoka H, Ohtake N, Hosomichi K, Suzuki K and Inoue I: Germline variants of prostate cancer in Japanese families. PLoS One. 11:e01642332016. View Article : Google Scholar : PubMed/NCBI

43 

Isaacsson Velho P, Silberstein JL, Markowski MC, Luo J, Lotan TL, Isaacs WB and Antonarakis ES: Intraductal/ductal histology and lymphovascular invasion are associated with germline DNA-repair gene mutations in prostate cancer. Prostate. 78:401–407. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ, Foye A, Kothari V, Perry MD, Bailey AM, et al: Genomic hallmarks and structural variation in metastatic prostate cancer. Cell. 174:758–769.e9. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Marshall CH, Fu W, Wang H, Baras AS, Lotan TL and Antonarakis ES: Prevalence of DNA repair gene mutations in localized prostate cancer according to clinical and pathologic features: Association of Gleason score and tumor stage. Prostate Cancer Prostatic Dis. 22:59–65. 2019. View Article : Google Scholar :

46 

Petrovics G, Ravindranath L, Chen Y, Ying K, Ali A, Young D, McLeod D, Sesterhenn I, Rosner I, Dahut W, et al: Higher frequency of germline BRCA1 and BRCA2 mutations in African American prostate cancer. J Urol. 195(Suppl. 4): e5482016. View Article : Google Scholar

47 

Williams BJ, Jones E, Zhu XL, Steele MR, Stephenson RA, Rohr LR and Brothman AR: Evidence for a tumor suppressor gene distal to BRCA1 in prostate cancer. J Urol. 155:720–725. 1996. View Article : Google Scholar : PubMed/NCBI

48 

Gao X, Zacharek A, Salkowski A, Grignon DJ, Sakr W, Porter AT and Honn KV: Loss of heterozygosity of the BRCA1 and other loci on chromosome 17q in human prostate cancer. Cancer Res. 55:1002–1005. 1995.PubMed/NCBI

49 

Hussain M, Daignault-Newton S, Twardowski PW, Albany C, Stein MN, Kunju LP, Siddiqui J, Wu YM, Robinson D, Lonigro RJ, et al: Targeting androgen receptor and DNA repair in metastatic castration-resistant prostate cancer: Results from NCI 9012. J Clin Oncol. 36:991–999. 2018. View Article : Google Scholar :

50 

Annala M, Struss WJ, Warner EW, Beja K, Vandekerkhove G, Wong A, Khalaf D, Seppälä IL, So A, Lo G, et al: Treatment outcomes and tumor loss of heterozygosity in germline DNA repair-deficient prostate cancer. Eur Urol. 72:34–42. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Cyll K, Ersvær E, Vlatkovic L, Pradhan M, Kildal W, Avranden Kjær M, Kleppe A, Hveem TS, Carlsen B, Gill S, et al: Tumour heterogeneity poses a significant challenge to cancer biomarker research. Br J Cancer. 117:367–375. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Bedard PL, Hansen AR, Ratain MJ and Siu LL: Tumour heterogeneity in the clinic. Nature. 501:355–364. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Stanta G and Bonin S: A practical approach to tumor heterogeneity in clinical research and diagnostics. Pathobiology. 85:7–17. 2018. View Article : Google Scholar

54 

Simon RM, Paik S and Hayes DF: Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst. 101:1446–1452. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Moore HM, Kelly AB, Jewell SD, McShane LM, Clark DP, Greenspan R, Hayes DF, Hainaut P, Kim P, Mansfield E, et al: Biospecimen reporting for improved study quality (BRISQ). J Proteome Res. 10:3429–3438. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, von Elm E, Khoury MJ, Cohen B, Davey-Smith G, Grimshaw J, et al: STrengthening the REporting of Genetic Association Studies: STrengthening the REporting of Genetic Association Studies (STREGA): An extension of the STROBE statement. PLoS Med. 6:e222009. View Article : Google Scholar

57 

Nam RK, Zhang WW, Jewett MA, Trachtenberg J, Klotz LH, Emami M, Sugar L, Sweet J, Toi A and Narod SA: The use of genetic markers to determine risk for prostate cancer at prostate biopsy. Clin Cancer Res. 11:8391–8397. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Näslund-Koch C, Nordestgaard BG and Bojesen SE: Increased risk for other cancers in addition to breast cancer for CHEK2*1100delC heterozygotes estimated from the Copenhagen General Population Study. J Clin Oncol. 34:1208–1216. 2016. View Article : Google Scholar

59 

Maier C, Wiest I, Luedeke M, Surowy H, Rinckleb A, Herkommer K, Kuefer R and Vogel W: BRCA2 mutation analysis in familial and early onset prostate cancer. Med Genetik. 22:97–98. 2010.

60 

Vazina A, Baniel J, Yaacobi Y, Shtriker A, Engelstein D, Leibovitz I, Zehavi M, Sidi AA, Ramon Y, Tischler T, et al: The rate of the founder Jewish mutations in BRCA1 and BRCA2 in prostate cancer patients in Israel. Br J Cancer. 83:463–466. 2000. View Article : Google Scholar : PubMed/NCBI

61 

Tanaka Y, Zaman MS, Majid S, Liu J, Kawakami K, Shiina H, Tokizane T, Dahiya AV, Sen S and Nakajima K: Polymorphisms of MLH1 in benign prostatic hyperplasia and sporadic prostate cancer. Biochem Biophys Res Commun. 383:440–444. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Uchida T, Wang C, Sato T, Gao J, Takashima R, Irie A, Ohori M and Koshiba K: BRCA1 gene mutation and loss of heterozygosity on chromosome 17q21 in primary prostate cancer. Int J Cancer. 84:19–23. 1999. View Article : Google Scholar : PubMed/NCBI

63 

Cendón Flórez Y, Nombela Blanco P, Medina A, Romero Laorden N, Puente J, López Casas P, Gutierrez Pecharromán A, Sanchez-Escribano R, Magraner L, Gallardo Diaz E, et al: 1660P - ATM role in prostate cancer (PrCa) progression and survival. Presented at European Society for Medical Oncology (ESMO) 2017 Congress; 1-12 Sep 2017; Madrid: Spain. urihttps://cslide.ctimeetingtech.com/library/esmo/browse/search/2yZzsimplehttps://cslide.ctimeetingtech.com/library/esmo/browse/search/2yZz. Accessed February 28 , 2018.

64 

Centro Nacional de Investigaciones Oncologicas CARLOS III: Prospective multicentre cohort study PROREPAIR-B (mCRPC) NCT03075735. WHO International Clinical Trials Registry Platform (ICTRP) [Internet] Geneva: World Health Organization (WHO); 2017, https://clinicaltrials.gov/show/NCT03075735urisimplehttps://clinicaltrials.gov/show/NCT03075735. Accessed December 12 , 2017.

65 

Angèle S, Falconer A, Edwards SM, Dörk T, Bremer M, Moullan N, Chapot B, Muir K, Houlston R, Norman AR, et al: ATM polymorphisms as risk factors for prostate cancer development. Br J Cancer. 91:783–787. 2004. View Article : Google Scholar : PubMed/NCBI

66 

Dawson NA, Heath EI, Feldman R, Reddy SK, Spetzler D, Poste GH and Raghavan D: Use of panomic assessment to reveal DNA repair alterations and to predict potential therapeutic response to taxaneplatinum combination therapy in prostate cancer. J Clin Oncol. 34(Suppl 15): pp. 50402016, View Article : Google Scholar

67 

Xia S, Kohli M, Du M, Dittmar RL, Lee A, Nandy D, Yuan T, Guo Y, Wang Y, Tschannen MR, et al: Plasma genetic and genomic abnormalities predict treatment response and clinical outcome in advanced prostate cancer. Oncotarget. 6:16411–16421. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Abida W, Curtis KR, Taylor BS, Arcila ME, Brennan R, Danila DC, Rathkopf DE, Morris MJ, Slovin SF, Solit DB, et al: Genomic characterization of primary and metastatic prostate cancer (PC) using a targeted next-generation sequencing assay. J Clin Oncol. 33(Suppl 15): 50622015. View Article : Google Scholar

69 

Abida W, Walsh MF, Armenia J, Vijai J, Gopalan A, Brennan R, Curtis K, Arcila M, Danila D, Arnold A, et al: Next generation sequencing of prostate cancer reveals germline and somatic alterations detected at diagnosis and at metastasis that may impact clinical decision making. Cancer Res. 76:LB-0702016.

70 

Abida W, Brennan R, Armenia J, Curtis KR, Gopalan A, Arcila ME, Danila DC, Rathkopf DE, Morris MJ, Slovin SF, et al: Genomic characterization of primary and metastatic prostate cancer (PC) using a targeted next-generation sequencing assay. J Clin Oncol. 34(Suppl 2): 2542016. View Article : Google Scholar

71 

Cheng ML, Abida W, Rathkopf DE, Arcila ME, Barron D, Autio KA, Zehir A, Danila DC, Morris MJ, Gopalan A, et al: Next-generation sequencing (NGS) of tissue and cell free DNA (cfDNA) to identify somatic and germline alterations in advanced prostate cancer. J Clin Oncol. 35(Suppl 15): 15102017. View Article : Google Scholar

72 

Feldman RA, Dan Basu G, Xiu J, Arguello D, Millis SZ, Bender R, Gatalica Z, Paul L and Myers CE: Molecular profiling of advanced refractory prostate cancer. J Clin Oncol. 32(Suppl 4): 1072014. View Article : Google Scholar

73 

Palapattu GS, Cani AK, Huang J, Hovelson DH, Lu D, Margolis D, Natarajan S, Mehra R, Montgomery JS, Morgan TM, et al: Progression of low-to high-grade prostate cancer: Molecular profiling of tissue obtained by serial targeted biopsy. J Clin Oncol. 33(Suppl 15): 50172015. View Article : Google Scholar

74 

Browning RE IV, Li H, Shinohara ET, Cai Q, Chen H, Courtney R, Cao C, Zheng W and Lu B: ATM polymorphism IVS62+60G>A is not associated with disease aggressiveness in prostate cancer. Urology. 67:1320–1323. 2006. View Article : Google Scholar : PubMed/NCBI

75 

Patel V, Busch E, D'Amico A and Rebbeck T: BRCA2 mutations in prostate cancer assort into cluster regions. J Radiat Oncol. 6:229–230. 2017.

76 

Wu X, Dong X, Liu W and Chen J: Characterization of CHEK2 mutations in prostate cancer. Hum Mutat. 27:742–747. 2006. View Article : Google Scholar : PubMed/NCBI

77 

Dall'Era M, Glass A, Lara P, Hartmaier R, DeVere White R and McPherson J: Frequency of DNA repair gene mutations in localized and metastatic prostate cancer. J Clin Oncol. 35(Suppl 6): 102017. View Article : Google Scholar

78 

Glass A, Lara P, Hartmaier R, DeVere White R, McPherson J and Dall'Era M: Frequency of DNA repair gene mutations in localized and metastatic prostate cancer. J Urol. 197(Suppl 4): e56–e57. 2017. View Article : Google Scholar

79 

Beltran H, Eng K, Mosquera JM, Sigaras A, Romanel A, Rennert H, Kossai M, Pauli C, Faltas B, Fontugne J, et al: Whole-exome sequencing of metastatic cancer and biomarkers of treatment response. JAMA Oncol. 1:466–474. 2015. View Article : Google Scholar : PubMed/NCBI

80 

Beltran H, Sboner A, Mosquera JM, Rickman D, Eng K, Prandi D, Kossai M, Faltas B, Pauli C, Fontugne J, et al: Precision medicine program for whole-exome sequencing (WES) provides new insight on platinum sensitivity in advanced prostate cancer (PCa). J Clin Oncol. 33(Suppl 7): 1582015. View Article : Google Scholar

81 

Beltran H, Yelensky R, Frampton GM, Park K, Downing SR, MacDonald TY, Jarosz M, Lipson D, Tagawa ST, Nanus DM, et al: Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur Urol. 63:920–926. 2013. View Article : Google Scholar :

82 

Gambhira R, Ledet EM, Dotiwala A, Mandal D and Sartor AO: Copy number variations in AR-associated and DNA repair genes from plasma cell-free DNA of metastatic CRPC patients. J Clin Oncol. 34(Suppl 2): 2812016. View Article : Google Scholar

83 

Daniel S, Gornstein E, Frampton GM, Sun J, Morley S, Heilmann A, Reddy P, Chung J, Suh J, Ramkissoon S, et al: BRCA1/2 reversion mutations in prostate cancer identified from clinical tissue and liquid biopsy samples. J Clin Oncol. 35(Suppl 15): 50242017. View Article : Google Scholar

84 

Robbins CM, Tembe WA, Baker A, Sinari S, Moses TY, Beckstrom-Sternberg S, Beckstrom-Sternberg J, Barrett M, Long J, Chinnaiyan A, et al: Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors. Genome Res. 21:47–55. 2011. View Article : Google Scholar :

85 

Hebbring SJ, Fredriksson H, White KA, Maier C, Ewing C, McDonnell SK, Jacobsen SJ, Cerhan J, Schaid DJ, Ikonen T, et al: Role of the Nijmegen breakage syndrome 1 gene in familial and sporadic prostate cancer. Cancer Epidemiol Biomarkers Prev. 15:935–938. 2006. View Article : Google Scholar : PubMed/NCBI

86 

Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, Park K, Kitabayashi N, MacDonald TY, Ghandi M, et al: Punctuated evolution of prostate cancer genomes. Cell. 153:666–677. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Liu Z, Zhou M, Lepor H, Zoino R, Rajoria G and Klimek S: Mutational analysis of prostate cancer using next generation cancer hotspot panel. Lab Invest. 96:246A–247A. 2016.

88 

Cheng Y, Thorne H, Bolton D, Clouston D, Willems A, Li J, Niedermeyer E, Fox S and Mitchell G: Altered significance of D'Amico risk assessment in BRCA2 positive vs negative patients from high risk breast cancer families. J Urol. 185(Suppl. 4): e622011. View Article : Google Scholar

89 

Gayther SA, de Foy KA, Harrington P, Pharoah P, Dunsmuir WD, Edwards SM, Gillett C, Ardern-Jones A, Dearnaley DP, Easton DF, et al: The Cancer Research Campaign/British Prostate Group United Kingdom Familial Prostate Cancer Study Collaborators: The frequency of germ-line mutations in the breast cancer predisposition genes BRCA1 and BRCA2 in familial prostate cancer. Cancer Res. 60:4513–4518. 2000.PubMed/NCBI

90 

Zuhlke KA, Johnson AM, Okoth LA, Stoffel EM, Robbins CM, Tembe WA, Salinas CA, Zheng SL, Xu J, Carpten JD, et al: Identification of a novel NBN truncating mutation in a family with hereditary prostate cancer. Fam Cancer. 11:595–600. 2012. View Article : Google Scholar : PubMed/NCBI

91 

LaDuca H, Espenschied C, Dolinsky JS, Smith LP, Fulk K, Pronold M, Horton C, Couch FJ and Davis BT: Hereditary cancer panel results identify gaps in knowledge of cancer risks and limitations in current guidelines. In: Presented at the American Society of Human Genetics Annual Meeting; 17 - 21 Oct , 2017; Orlando: United States. 2017

92 

Ledet EM, Ernst EM, Schiff J, Lin S, Lewis BE and Sartor AO: Germline variants and family history in caucasian and African-American prostate cancer. J Clin Oncol. 35(Suppl 15): pp. e165482017, View Article : Google Scholar

93 

Lin S, Ledet EM, Schiff J, Ernst EM, Garvey CE, Lewis BE and Sartor O: Inherited pathologic mutations and family history in patients with prostate cancer. J Clin Oncol. 35(Suppl 6): pp. 1852017, View Article : Google Scholar

94 

Marshall M, Tully D, Susswein L, Theobald K, Murphy P and Klein R: Panel testing in men with prostate cancer meeting NCCN genetic testing criteria (AB2017-59). J Natl Compr Canc Netw. 15:e15–e16. 2017.

95 

Tischkowitz MD, Yilmaz A, Chen LQ, Karyadi DM, Novak D, Kirchhoff T, Hamel N, Tavtigian SV, Kolb S, Bismar TA, et al: Identification and characterization of novel SNPs in CHEK2 in Ashkenazi Jewish men with prostate cancer. Cancer Lett. 270:173–180. 2008. View Article : Google Scholar : PubMed/NCBI

96 

Hamel N, Kotar K and Foulkes WD: Founder mutations in BRCA1/2 are not frequent in Canadian Ashkenazi Jewish men with prostate cancer. BMC Med Genet. 4:72003. View Article : Google Scholar : PubMed/NCBI

97 

Damaraju S, Murray D, Dufour J, Carandang D, Myrehaug S, Fallone G, Field C, Greiner R, Hanson J, Cass CE, et al: Association of DNA repair and steroid metabolism gene polymorphisms with clinical late toxicity in patients treated with conformal radiotherapy for prostate cancer. Clin Cancer Res. 12:2545–2554. 2006. View Article : Google Scholar : PubMed/NCBI

98 

Meyer A, Wilhelm B, Dörk T, Bremer M, Baumann R, Karstens JH and Machtens S: ATM missense variant P1054R predisposes to prostate cancer. Radiother Oncol. 83:283–288. 2007. View Article : Google Scholar : PubMed/NCBI

99 

Nientiedt C, Heller M, Endris V, Volckmar AL, Zschäbitz S, Tapia-Laliena MA, Duensing A, Jäger D, Schirmacher P, Sültmann H, et al: Mutations in BRCA2 and taxane resistance in prostate cancer. Sci Rep. 7:45742017. View Article : Google Scholar : PubMed/NCBI

100 

Hubert A, Peretz T, Manor O, Kaduri L, Wienberg N, Lerer I, Sagi M and Abeliovich D: The Jewish Ashkenazi founder mutations in the BRCA1/BRCA2 genes are not found at an increased frequency in Ashkenazi patients with prostate cancer. Am J Hum Genet. 65:921–924. 1999. View Article : Google Scholar : PubMed/NCBI

101 

Giusti RM, Rutter JL, Duray PH, Freedman LS, Konichezky M, Fisher-Fischbein J, Greene MH, Maslansky B, Fischbein A, Gruber SB, et al: A twofold increase in BRCA mutation related prostate cancer among Ashkenazi Israelis is not associated with distinctive histopathology. J Med Genet. 40:787–792. 2003. View Article : Google Scholar : PubMed/NCBI

102 

Kote-Jarai Z, Leongamornlert D, Saunders E, Tymrakiewicz M, Castro E, Mahmud N, Guy M, Edwards S, O'Brien L, Sawyer E, et al: UKGPCS Collaborators: BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: Implications for genetic testing in prostate cancer patients. Br J Cancer. 105:1230–1234. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Edwards SM, Kote-Jarai Z, Meitz J, Hamoudi R, Hope Q, Osin P, Jackson R, Southgate C, Singh R, Falconer A, et al: Cancer Research UK/Bristish Prostate Group UK Familial Prostate Cancer Study Collaborators; British Association of Urological Surgeons Section of Oncology: Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet. 72:1–12. 2003. View Article : Google Scholar

104 

Agalliu I, Karlins E, Kwon EM, Iwasaki LM, Diamond A, Ostrander EA and Stanford JL: Rare germline mutations in the BRCA2 gene are associated with early-onset prostate cancer. Br J Cancer. 97:826–831. 2007. View Article : Google Scholar : PubMed/NCBI

105 

Gallagher DJ, Cronin AM, Milowsky MI, Morris MJ, Bhatia J, Scardino PT, Eastham JA, Offit K and Robson ME: Germline BRCA mutation does not prevent response to taxane-based therapy for the treatment of castration-resistant prostate cancer. BJU Int. 109:713–719. 2012. View Article : Google Scholar

106 

Agalliu I, Gern R, Leanza S and Burk RD: Associations of high-grade prostate cancer with BRCA1 and BRCA2 founder mutations. Clin Cancer Res. 15:1112–1120. 2009. View Article : Google Scholar : PubMed/NCBI

107 

Kirchhoff T, Kauff ND, Mitra N, Nafa K, Huang H, Palmer C, Gulati T, Wadsworth E, Donat S, Robson ME, et al: BRCA mutations and risk of prostate cancer in Ashkenazi Jews. Clin Cancer Res. 10:2918–2921. 2004. View Article : Google Scholar : PubMed/NCBI

108 

Lehrer S, Fodor F, Stock RG, Stone NN, Eng C, Song HK and McGovern M: Absence of 185delAG mutation of the BRCA1 gene and 6174delT mutation of the BRCA2 gene in Ashkenazi Jewish men with prostate cancer. Br J Cancer. 78:771–773. 1998. View Article : Google Scholar : PubMed/NCBI

109 

Cesaretti JA, Stock RG, Atencio DP, Peters SA, Peters CA, Burri RJ, Stone NN and Rosenstein BS: A genetically determined dose-volume histogram predicts for rectal bleeding among patients treated with prostate brachytherapy. Int J Radiat Oncol Biol Phys. 68:1410–1416. 2007. View Article : Google Scholar : PubMed/NCBI

110 

Zhu Y, Marshall D, Garrett-Mayer E, Zhou D and Jenrette J: Association between urinary morbidity/erectile dysfunction induced by radiotherapy and SNPs of radiosensitivity-relevant genes in prostate cancer patients. Clin Chem. 56:A902010.

111 

Pomerantz MM, Spisák S, Jia L, Cronin AM, Csabai I, Ledet E, Sartor AO, Rainville I, O'Connor EP, Herbert ZT, et al: The association between germline BRCA2 variants and sensitivity to platinum-based chemotherapy among men with metastatic prostate cancer. Cancer. 123:3532–3539. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Hart SN, Ellingson MS, Schahl K, Vedell PT, Carlson RE, Sinnwell JP, Barman P, Sicotte H, Eckel-Passow JE, Wang L, et al: Determining the frequency of pathogenic germline variants from exome sequencing in patients with castrate-resistant prostate cancer. BMJ Open. 6:e0103322016. View Article : Google Scholar : PubMed/NCBI

113 

Antonarakis ES, Lu C, Luber B, Liang C, Wang H, Chen Y, Silberstein JL, Piana D, Lai Z, Chen Y, et al: Germline DNA-repair gene mutations and outcomes in men with metastatic castration-resistant prostate cancer receiving first-line abiraterone and enzalutamide. Eur Urol. 74:218–225. 2018. View Article : Google Scholar : PubMed/NCBI

114 

Nastiuk KL, Mansukhani M, Terry MB, Kularatne P, Rubin MA, Melamed J, Gammon MD, Ittmann M and Krolewski JJ: Common mutations in BRCA1 and BRCA2 do not contribute to early prostate cancer in Jewish men. Prostate. 40:172–177. 1999. View Article : Google Scholar : PubMed/NCBI

115 

Schweizer MT, Cheng HH, Tretiakova MS, Vakar-Lopez F, Klemfuss N, Konnick EQ, Mostaghel EA, Nelson PS, Yu EY, Montgomery B, et al: Mismatch repair deficiency may be common in ductal adenocarcinoma of the prostate. Oncotarget. 7:82504–82510. 2016. View Article : Google Scholar : PubMed/NCBI

116 

Stephens PJ, Gay LM, Ali SM, Hoffman-Censits JH, Elvin JA, Vergilio JA, Suh J, Mian B, Fisher HAG, Nazeer T, et al: Comprehensive genomic profiling of neuroendocrine carcinoma of the prostate. J Clin Oncol. 34(Suppl 15): 1872016. View Article : Google Scholar

Related Articles

Journal Cover

September 2019
Volume 55 Issue 3

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Lang, S.H., Swift, S.L., White, H., Misso, K., Kleijnen, J., & Quek, R.G. (2019). A systematic review of the prevalence of DNA damage response gene mutations in prostate cancer. International Journal of Oncology, 55, 597-616. https://doi.org/10.3892/ijo.2019.4842
MLA
Lang, S. H., Swift, S. L., White, H., Misso, K., Kleijnen, J., Quek, R. G."A systematic review of the prevalence of DNA damage response gene mutations in prostate cancer". International Journal of Oncology 55.3 (2019): 597-616.
Chicago
Lang, S. H., Swift, S. L., White, H., Misso, K., Kleijnen, J., Quek, R. G."A systematic review of the prevalence of DNA damage response gene mutations in prostate cancer". International Journal of Oncology 55, no. 3 (2019): 597-616. https://doi.org/10.3892/ijo.2019.4842