Open Access

Long non‑coding RNAs in lung cancer: Regulation patterns, biologic function and diagnosis implications (Review)

  • Authors:
    • Lin Jiang
    • Zheng Li
    • Ranran Wang
  • View Affiliations

  • Published online on: July 29, 2019     https://doi.org/10.3892/ijo.2019.4850
  • Pages: 585-596
  • Copyright : © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Lung cancer is the most common malignancy with the highest mortality worldwide. Emerging research has demonstrated that long non‑coding RNAs (lncRNAs), a key genomic product, are commonly dysregulated in lung cancer and have significant functions in lung cancer initiation, progression and therapeutic response. lncRNAs may interact with DNA, RNA or proteins, as tumor suppressor genes or oncogenes, to regulate gene expression and cell signaling pathways. In the present review, first a summary was presented of the causal effects of dysregulated lncRNAs in lung cancer. Next, the function and specific mechanisms of lncRNA‑mediated tumorigenesis, metastasis and drug resistance in lung cancer were discussed. Finally, the potential roles of lncRNAs as biomarkers for lung cancer were explored.

References

1 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Cheng TY, Cramb SM, Baade PD, Youlden DR, Nwogu C and Reid ME: The International epidemiology of lung cancer: Latest trends, disparities, and tumor characteristics. J Thorac Oncol. 11:1653–1671. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Behera M, Owonikoko TK, Gal AA, Steuer CE, Kim S, Pillai RN, Khuri FR, Ramalingam SS and Sica GL: Lung adenocarcinoma staging using the 2011 IASLC/ATS/ERS classification: A pooled analysis of adenocarcinoma in situ and minimally invasive adenocarcinoma. Clin Lung Cancer. 17:e57–e64. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Chen Z, Fillmore CM, Hammerman PS, Kim CF and Wong KK: Non-small-cell lung cancers: A heterogeneous set of diseases. Nat Rev Cancer. 14:535–546. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Xue K, Li FF, Chen YW, Zhou YH and He J: Body mass index and the risk of cancer in women compared with men: A meta-analysis of prospective cohort studies. Eur J Cancer Prev. 26:94–105. 2016. View Article : Google Scholar : PubMed/NCBI

6 

de Groot PM, Wu CC, Carter BW and Munden RF: The epidemiology of lung cancer. Transl Luna Cancer Res. 7:220–233. 2018. View Article : Google Scholar

7 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Malhotra J, Malvezzi M, Negri E, La Vecchia C and Boffetta P: Risk factors for lung cancer worldwide. Eur Respir J. 48:889–902. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A and Rinn JL: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25:1915–1927. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Marchese FP, Raimondi I and Huarte M: The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 18:2062017. View Article : Google Scholar : PubMed/NCBI

11 

Sun Q, Hao Q and Prasanth KV: Nuclear long noncoding RNAs: Key regulators of gene expression. Trends Genet. 34:142–157. 2018. View Article : Google Scholar :

12 

Huarte M: The emerging role of lncRNAs in cancer. Nat Med. 21:1253–1261. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Lin C and Yang L: Long noncoding RNA in cancer: Wiring signaling circuitry. Trends Cell Biol. 28:287–301. 2018. View Article : Google Scholar :

14 

Ding X, Zhang S, Li X, Feng C, Huang Q, Wang S, Wang S, Xia W, Yang F, Yin R, et al: Profiling expression of coding genes, long noncoding RNA, and circular RNA in lung adenocarcinoma by ribosomal RNA-depleted RNA sequencing. FEBS Open Bio. 8:544–555. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Tang RX, Chen WJ, He RQ, Zeng JH, Liang L, Li SK, Ma J, Luo DZ and Chen G: Identification of a RNA-Seq based prognostic signature with five lncRNAs for lung squamous cell carcinoma. Oncotarget. 8:50761–50773. 2017.PubMed/NCBI

16 

Tian X, Zhang H, Zhang B, Zhao J, Li T and Zhao Y: Microarray expression profile of long non-coding RNAs in paclitaxel-resistant human lung adenocarcinoma cells. Oncol Rep. 38:293–300. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Yang J, Lin J, Liu T, Chen T, Pan S, Huang W and Li S: Analysis of lncRNA expression profiles in non-small cell lung cancers (NSCLC) and their clinical subtypes. Lung Cancer. 85:110–115. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Peng F, Wang R, Zhang Y, Zhao Z, Zhou W, Chang Z, Liang H, Zhao W, Qi L, Guo Z and Gu Y: Differential expression analysis at the individual level reveals a lncRNA prognostic signature for lung adenocarcinoma. Mol Cancer. 16:982017. View Article : Google Scholar : PubMed/NCBI

19 

Gibb EA, Warren RL, Wilson GW, Brown SD, Robertson GA, Morin GB and Holt RA: Activation of an endogenous retrovirus-associated long non-coding RNA in human adenocarcinoma. Genome Med. 7:222015. View Article : Google Scholar : PubMed/NCBI

20 

Kaplan R, Luettich K, Heguy A, Hackett NR, Harvey BG and Crystal RG: Monoallelic up-regulation of the imprinted H19 gene in airway epithelium of phenotypically normal cigarette smokers. Cancer Res. 63:1475–1482. 2003.PubMed/NCBI

21 

Chen B, Yu M, Chang Q, Lu Y, Thakur C, Ma D, Yi Z and Chen F: Mdig de-represses H19 large intergenic non-coding RNA (lincRNA) by down-regulating H3K9me3 and heterochromatin. Oncotarget. 4:1427–1437. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Fu Y, Wang W, Li X, Liu Y, Niu Y, Zhang B, Nie J, Pan B, Wang R and Yang J: lncRNA H19 interacts with S-adenosylhomocysteine hydrolase to regulate LINE-1 Methylation in human lung-derived cells exposed to Benzo[a]pyrene. Chemosphere. 207:84–90. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Thai P, Statt S, Chen CH, Liang E, Campbell C and Wu R: Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines. Am J Respir Cell Mol Biol. 49:204–211. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Hu L, Tang J, Huang X, Zhang T and Feng X: Hypoxia exposure upregulates MALAT-1 and regulates the transcriptional activity of PTB-associated splicing factor in A549 lung adenocarcinoma cells. Oncol Lett. 16:294–300. 2018.PubMed/NCBI

25 

Zhou C, Ye L, Jiang C, Bai J, Chi Y and Zhang H: Long noncoding RNA HOTAIR, a hypoxia-inducible factor-1α activated driver of malignancy, enhances hypoxic cancer cell proliferation, migration, and invasion in non-small cell lung cancer. Tumour Biol. 36:9179–9188. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Guo F, Guo L, Li Y, Zhou Q and Li Z: MALAT1 is an oncogenic long non-coding RNA associated with tumor invasion in non-small cell lung cancer regulated by DNA methylation. Int J Clin Exp Pathol. 8:15903–15910. 2015.

27 

Khaitan D, Dinger ME, Mazar J, Crawford J, Smith MA, Mattick JS and Perera RJ: The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res. 71:3852–3862. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Sun M, Liu XH, Lu KH, Nie FQ, Xia R, Kong R, Yang JS, Xu TP, Liu YW, Zou YF, et al: EZH2-mediated epigenetic suppression of long noncoding RNA SPRY4-IT1 promotes NSCLC cell proliferation and metastasis by affecting the epithelial-mesenchymal transition. Cell Death Dis. 5:e12982014. View Article : Google Scholar : PubMed/NCBI

29 

Wen X, Han XR, Wang YJ, Fan SH, Zhuang J, Zhang ZF, Shan Q, Li MQ, Hu B, Sun CH, et al: Effects of long noncoding RNA SPRY4-IT1-mediated EZH2 on the invasion and migration of lung adenocarcinoma. J Cell Biochem. 119:1827–1840. 2018. View Article : Google Scholar

30 

Zhai N, Xia Y, Yin R, Liu J and Gao F: A negative regulation loop of long noncoding RNA HOTAIR and p53 in non-small-cell lung cancer. Onco Targets Ther. 9:5713–5720. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, et al: Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 43:621–629. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Han L, Zhang EB, Yin DD, Kong R, Xu TP, Chen WM, Xia R, Shu YQ and De W: Low expression of long noncoding RNA PANDAR predicts a poor prognosis of non-small cell lung cancer and affects cell apoptosis by regulating Bcl-2. Cell Death Dis. 6:e16652015. View Article : Google Scholar : PubMed/NCBI

33 

Barsyte-Lovejoy D, Lau SK, Boutros PC, Khosravi F, Jurisica I, Andrulis IL, Tsao MS and Penn LZ: The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res. 66:5330–5337. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Lu Y, Zhou X, Xu L, Rong C, Shen C and Bian W: Long noncoding RNA ANRIL could be transactivated by c-Myc and promote tumor progression of non-small-cell lung cancer. Onco Targets Ther. 9:3077–3084. 2016.PubMed/NCBI

35 

Huang T, Wang G, Yang L, Peng B, Wen Y, Ding G and Wang Z: Transcription Factor YY1 modulates lung cancer progression by activating lncRNA-PVT1. DNA Cell Biol. 36:947–958. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Wan L, Sun M, Liu GJ, Wei CC, Zhang EB, Kong R, Xu TP, Huang MD and Wang ZX: Long noncoding RNA PVT-1 promotes non-small cell lung cancer cell proliferation through epigenetically regulating LATS2 expression. Mol Cancer Ther. 15:1082–1094. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Li S, Ma F, Jiang K, Shan H, Shi M and Chen B: Long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 promotes lung adenocarcinoma by directly interacting with specificity protein 1. Cancer Sci. 109:1346–1356. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Jen J, Tang YA, Lu YH, Lin CC, Lai WW and Wang YC: Oct4 transcriptionally regulates the expression of long non-coding RNAs NEAT1 and MALAT1 to promote lung cancer progression. Mol Cancer. 16:1042017. View Article : Google Scholar : PubMed/NCBI

39 

Guo F, Jiao F, Song Z, Li S, Liu B, Yang H, Zhou Q and Li Z: Regulation of MALAT1 expression by TDP43 controls the migration and invasion of non-small cell lung cancer cells in vitro. Biochem Biophys Res Commun. 465:293–298. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Li S, Mei Z, Hu HB and Zhang X: The lncRNA MALAT1 contributes to non-small cell lung cancer development via modulating miR-124/STAT3 axis. J Cell Physiol. 233:6679–6688. 2018. View Article : Google Scholar

41 

Tang Y, Xiao G, Chen Y and Deng Y: lncRNA MALAT 1 p romotes migration and invasion of non-small-cell lung cancer by targeting miR-206 and activating Akt/mTOR signaling. Anticancer Drugs. 29:725–735. 2018.PubMed/NCBI

42 

Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, et al: The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 39:925–938. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Tano K, Onoguchi-Mizutani R, Yeasmin F, Uchiumi F, Suzuki Y, Yada T and Akimitsu N: Identification of minimal p53 promoter region regulated by MALAT1 in human lung adenocarcinoma Cells. Front Genet. 8:2082018. View Article : Google Scholar :

44 

Ma J, Wu K, Liu K and Miao R: Effects of MALAT1 on proliferation and apoptosis of human non-small cell lung cancer A549 cells in vitro and tumor xenograft growth in vivo by modulating autophagy. Cancer Biomark. 22:63–72. 2018. View Article : Google Scholar

45 

Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E and Chang HY: Long noncoding RNA as modular scaffold of histone modification complexes. Science. 329:689–693. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Wang R, Chen X, Xu T, Xia R, Han L, Chen W, De W and Shu Y: miR-326 regulates cell proliferation and migration in lung cancer by targeting phox2a and is regulated by HOTAIR. Am J Cancer Res. 6:173–186. 2016.PubMed/NCBI

47 

Feng L, Xie Y, Zhang H and Wu Y: miR-107 targets cyclin-dependent kinase 6 expression, induces cell cycle G1 arrest and inhibits invasion in gastric cancer cells. Med Oncol. 29:856–863. 2012. View Article : Google Scholar

48 

Cui J, Mo J, Luo M, Yu Q, Zhou S, Li T, Zhang Y and Luo W: c-Myc-activated long non-coding RNA H19 downregulates miR-107 and promotes cell cycle progression of non-small cell lung cancer. Int J Clin Exp Pathol. 8:12400–12409. 2015.

49 

Zhang E, Li W, Yin D, De W, Zhu L, Sun S and Han L: c-Myc-regulated long non-coding RNA H19 indicates a poor prognosis and affects cell proliferation in non-small-cell lung cancer. Tumour Biol. 37:4007–4015. 2016. View Article : Google Scholar

50 

Huang Z, Lei W, Hu HB, Zhang H and Zhu Y: H19 promotes non-small-cell lung cancer (NSCLC) development through STAT3 signaling via sponging miR-17. J Cell Physiol. 233:6768–6776. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Zhang Q, Li X, Li X, Li X and Chen Z: lncRNA H19 promotes epithelial-mesenchymal transition (EMT) by targeting miR-484 in human lung cancer cells. J Cell Biochem. 119:4447–4457. 2018. View Article : Google Scholar

52 

Ren J, Fu J, Ma T, Yan B, Gao R, An Z and Wang D: lncRNA H19-elevated LIN28B promotes lung cancer progression through sequestering miR-196b. Cell Cycle. 17:1372–1380. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Chen Z, Li JL, Lin S, Cao C, Gimbrone NT, Yang R, Fu DA, Carper MB, Haura EB, Schabath MB, et al: cAMP/CREB-regulated LINC00473 marks LKB1-inactivated lung cancer and mediates tumor growth. J Clin Invest. 126:2267–2279. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Li J, Li P, Zhao W, Yang R, Chen S, Bai Y, Dun S, Chen X, Du Y, Wang Y, et al: Expression of long non-coding RNA DLX6-AS1 in lung adenocarcinoma. Cancer Cell Int. 15:482015. View Article : Google Scholar : PubMed/NCBI

55 

Naemura M, Murasaki C, Inoue Y, Okamoto H and Kotake Y: Long noncoding RNA ANRIL regulates proliferation of non-small cell lung cancer and cervical cancer cells. Anticancer Res. 35:5377–5382. 2015.PubMed/NCBI

56 

Nie FQ, Sun M, Yang JS, Xie M, Xu TP, Xia R, Liu YW, Liu XH, Zhang EB, Lu KH and Shu YQ: Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol Cancer Ther. 14:268–277. 2015. View Article : Google Scholar

57 

Hou Z, Zhao W, Zhou J, Shen L, Zhan P, Xu C, Chang C, Bi H, Zou J, Yao X, et al: A long noncoding RNA Sox2ot regulates lung cancer cell proliferation and is a prognostic indicator of poor survival. Int J Biochem Cell Biol. 53:380–388. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Flockhart RJ, Webster DE, Qu K, Mascarenhas N, Kovalski J, Kretz M and Khavari PA: BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res. 22:1006–1014. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Jiang W, Zhang D, Xu B, Wu Z, Liu S, Zhang L, Tian Y, Han X and Tian D: Long non-coding RNA BANCR promotes proliferation and migration of lung carcinoma via MAPK pathways. Biomed Pharmacother. 69:90–95. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Zhao JM, Cheng W, He XG, Liu YL, Wang FF and Gao YF: Long non-coding RNA PICART1 suppresses proliferation and promotes apoptosis in lung cancer cells by inhibiting JAK2/STAT3 signaling. Neoplasma. 65:779–789. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Su W, Feng S, Chen X, Yang X, Mao R, Guo C, Wang Z, Thomas DG, Lin J, Reddy RM, et al: Silencing of long noncoding RNA MIR22HG triggers cell Survival/Death signaling via oncogenes YBX1, MET, and p21 in lung cancer. Cancer Res. 78:3207–3219. 2018.PubMed/NCBI

62 

Mondal T, Rasmussen M, Pandey GK, Isaksson A and Kanduri C: Characterization of the RNA content of chromatin. Genome Res. 20:899–907. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Wei MM, Zhou YC, Wen ZS, Zhou B, Huang YC, Wang GZ, Zhao XC, Pan HL, Qu LW, Zhang J, et al: Long non-coding RNA stabilizes the Y-box-binding protein 1 and regulates the epidermal growth factor receptor to promote lung carcinogenesis. Oncotarget. 7:59556–59571. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Liu M, Sun W, Liu Y and Dong X: The role of lncRNA MALAT1 in bone metastasis in patients with non-small cell lung cancer. Oncol Rep. 36:1679–1685. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G, Revenko A, Arun G, Stentrup M, Gross M, et al: The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 73:1180–1189. 2013. View Article : Google Scholar

66 

Li J, Wang J, Chen Y, Li S, Jin M, Wang H, Chen Z and Yu W: lncRNA MALAT1 exerts oncogenic functions in lung adenocarcinoma by targeting miR-204. Am J Cancer Res. 6:1099–1107. 2016.PubMed/NCBI

67 

Jiang C, Yang Y, Yang Y, Guo L, Huang J, Liu X, Wu C and Zou J: Long noncoding RNA (lncRNA) HOTAIR affects tumorigenesis and metastasis of non-small cell lung cancer by upregulating miR-613. Oncol Res. 26:725–734. 2018. View Article : Google Scholar

68 

Wang R, Yan B, Li Z, Jiang Y, Mao C, Wang X and Zhou X: Long non-coding RNA HOX transcript antisense RNA promotes expression of 14-3-3σ in non-small cell lung cancer. Exp Ther Med. 14:4503–4508. 2017.PubMed/NCBI

69 

Liu XH, Liu ZL, Sun M, Liu J, Wang ZX and De W: The long non-coding RNA HOTAIR indicates a poor prognosis and promotes metastasis in non-small cell lung cancer. BMC cancer. 13:4642013. View Article : Google Scholar : PubMed/NCBI

70 

Ono H, Motoi N, Nagano H, Miyauchi E, Ushijima M, Matsuura M, Okumura S, Nishio M, Hirose T, Inase N and Ishikawa Y: Long noncoding RNA HOTAIR is relevant to cellular proliferation, invasiveness, and clinical relapse in small-cell lung cancer. Cancer Med. 3:632–642. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Wang R, Shi Y, Chen L, Jiang Y, Mao C, Yan B, Liu S, Shan B, Tao Y and Wang X: Theratio of FoxA1 to FoxA2 in lung adenocarcinoma is regulated by lncRNA HOTAIR and chromatin remodeling factor LSH. Sci Rep. 5:178262015. View Article : Google Scholar

72 

Guo D, Wang Y, Ren K and Han X: Knockdown of lncRNA PVT1 inhibits tumorigenesis in non-small-cell lung cancer by regulating miR-497 expression. Exp Cell Res. 362:172–179. 2018. View Article : Google Scholar

73 

Chen W, Zhu H, Yin L, Wang T, Wu J, Xu J, Tao H, Liu J and He X: lncRNA-PVT1 facilitates invasion through upregulation of MMP9 in nonsmall cell lung cancer cell. DNA Cell Biol. 36:787–793. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Lin L, Gu ZT, Chen WH and Cao KJ: Increased expression of the long non-coding RNA ANRIL promotes lung cancer cell metastasis and correlates with poor prognosis. Diagn Pathol. 10:142015. View Article : Google Scholar : PubMed/NCBI

75 

Li Z, Yu X and Shen J: ANRIL: A pivotal tumor suppressor long non-coding RNA in human cancers. Tumour Biol. 37:5657–5661. 2016. View Article : Google Scholar : PubMed/NCBI

76 

Yu T, Zhao Y, Hu Z, Li J, Chu D, Zhang J, Li Z, Chen B, Zhang X, Pan H, et al: Metalnc9 facilitates lung cancer metastasis via a PGK1-activated AKT/mTOR pathway. Cancer Res. 77:5782–5794. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Zhang L, Zhou XF, Pan GF and Zhao JP: Enhanced expression of long non-coding RNA ZXF-1 promoted the invasion and metastasis in lung adenocarcinoma. Biomed Pharmacother. 68:401–407. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Ge X, Li GY, Jiang L, Jia L, Zhang Z, Li X, Wang R, Zhou M, Zhou Y, Zeng Z, et al: Long noncoding RNA CAR10 promotes lung adenocarcinoma metastasis via miR-203/30/SNAI axis. Oncogene. 38:3061–3076. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Falzone L, Salomone S and Libra M: Evolution of cancer pharmacological treatments at the turn of the third millennium. Front Pharmacol. 9:13002018. View Article : Google Scholar : PubMed/NCBI

80 

Sun YW, Xu J, Zhou J and Liu WJ: Targeted drugs for systemic therapy of lung cancer with brain metastases. Oncotarget. 9:5459–5472. 2017.

81 

Yang CJ, Hung JY, Tsai MJ, Wu KL, Liu TC, Chou SH, Lee JY, Hsu JS, Huang MS and Chong IW: The salvage therapy in lung adenocarcinoma initially harbored susceptible EGFR mutation and acquired resistance occurred to the first-line gefitinib and second-line cytotoxic chemotherapy. BMC Pharmacol Toxicol. 18:212017. View Article : Google Scholar : PubMed/NCBI

82 

Mitsudomi T: Advances in target therapy for lung cancer. Jpn J Clin Oncol. 40:101–106. 2010. View Article : Google Scholar

83 

Konieczna A, Novakova V, Medalova J, Erceg S and Klabusay M: Thiazolidinediones regulate the level of ABC transporters expression on lung cancer cells. Klin Onkol. 28:431–438. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Gao Y, Li W, Liu X, Gao F and Zhao X: Reversing effect and mechanism of soluble resistance-related calcium-binding protein on multidrug resistance in human lung cancer A549/DDP cells. Mol Med Rep. 11:2118–2124. 2015. View Article : Google Scholar

85 

Patel NR, Pattni BS, Abouzeid AH and Torchilin VP: Nanopreparations to overcome multidrug resistance in cancer. Adv Drug Deliv Rev. 65:1748–1762. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Fang Z, Chen W, Yuan Z, Liu X and Jiang H: lncRNA-MALAT1 contributes to the cisplatin-resistance of lung cancer by upregulating MRP1 and MDR1 via STAT3 activation. Biomed Pharmacother. 101:536–542. 2018. View Article : Google Scholar : PubMed/NCBI

87 

Liu MY, Li XQ, Gao TH, Cui Y, Ma N, Zhou Y and Zhang GJ: Elevated HOTAIR expression associated with cisplatin resistance in non-small cell lung cancer patients. J Thorac Dis. 8:3314–3322. 2016. View Article : Google Scholar

88 

Wang Q, Cheng N, Li X, Pan H, Li C, Ren S, Su C, Cai W, Zhao C, Zhang L and Zhou C: Correlation of long non-coding RNA H19 expression with cisplatin-resistance and clinical outcome in lung adenocarcinoma. Oncotarget. 8:2558–2567. 2017.

89 

Liu J, Wan L, Lu K, Sun M, Pan X, Zhang P, Lu B, Liu G and Wang Z: The long noncoding RNA MEG3 contributes to cispl-atin resistance of human lung adenocarcinoma. PLoS One. 10:e01145862015. View Article : Google Scholar

90 

Yang Y, Li H, Hou S, Hu B, Liu J and Wang J: The noncoding RNA expression profile and the effect of lncRNA AK126698 on cisplatin resistance in non-small-cell lung cancer cell. PLoS One. 8:e653092013. View Article : Google Scholar : PubMed/NCBI

91 

Chen W, Zhao W, Zhang L, Wang L, Wang J, Wan Z, Hong Y and Yu L: MALAT1-miR-101 SOX9 feedback loop modulates the chemo-resistance of lung cancer cell to DDP via Wnt signaling pathway. Oncotarget. 8:94317–94329. 2017.PubMed/NCBI

92 

Wang H, Wang L, Zhang G, Lu C, Chu H, Yang R and Zhao G: MALAT1/miR-101 3p/MCL1 axis mediates cisplatin resistance in lung cancer. Oncotarget. 9:7501–7512. 2017.

93 

Liu Z, Sun M, Lu K, Liu J, Zhang M, Wu W, De W, Wang Z and Wang R: The long noncoding RNA HOTAIR contributes to cisplatin resistance of human lung adenocarcinoma cells via downregualtion of p21(WAF1/CIP1) expression. PLoS One. 8:e772932013. View Article : Google Scholar : PubMed/NCBI

94 

Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, et al: DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 416:552–556. 2002. View Article : Google Scholar : PubMed/NCBI

95 

Fang S, Gao H, Tong Y, Yang J, Tang R, Niu Y, Li M and Guo L: Long noncoding RNA-HOTAIR affects chemoresistance by regulating HOXA1 methylation in small cell lung cancer cells. Lab Invest. 96:60–68. 2016. View Article : Google Scholar

96 

Kris MG, Natale RB, Herbst RS, Lynch TJ Jr, Prager D, Belani CP, Schiller JH, Kelly K, Spiridonidis H, Sandler A, et al: Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: A randomized trial. JAMA. 290:2149–2158. 2003. View Article : Google Scholar : PubMed/NCBI

97 

Wheler J, Falchook G, Tsimberidou AM, Hong D, Naing A, Piha-Paul S, Chen SS, Heymach J, Fu S, Stephen B, et al: Revisiting clinical trials using EGFR inhibitor-based regimens in patients with advanced non-small cell lung cancer: A retrospective analysis of an MD Anderson Cancer Center phase I population. Oncotarget. 4:772–784. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Chang YS, Choi CM and Lee JC: Mechanisms of epidermal growth factor receptor tyrosine kinase inhibitor resistance and strategies to overcome resistance in lung adenocarcinoma. Tuberc Respir Dis (Seoul). 79:248–256. 2016. View Article : Google Scholar

99 

Cheng N, Li X, Zhao C, Ren S, Chen X, Cai W, Zhao M, Zhang Y, Li J, Wang Q and Zhou C: Microarray expression profile of long non-coding RNAs in EGFR-TKIs resistance of human non-small cell lung cancer. Oncol Rep. 33:833–839. 2015. View Article : Google Scholar

100 

Liu Y, Jiang H, Zhou H, Ying X, Wang Z, Yang Y, Xu W, He X and Li Y: Lentivirus-mediated silencing of HOTAIR lncRNA restores gefitinib sensitivity by activating Bax/caspase-3 and suppressing TGF-α/EGFR signaling in lung adenocarcinoma. Oncol Lett. 15:2829–2838. 2018.PubMed/NCBI

101 

Cheng N, Cai W, Ren S, Li X, Wang Q, Pan H, Zhao M, Li J, Zhang Y, Zhao C, et al: Long non-coding RNA UCA1 induces non-T790M acquired resistance to EGFR-TKIs by activating the AKT/mTOR pathway in EGFR-mutant non-small cell lung cancer. Oncotarget. 6:23582–23593. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Dong S, Qu X, Li W, Zhong X, Li P, Yang S, Chen X, Shao M and Zhang L: The long non-coding RNA, GAS5, enhances gefitinib-induced cell death in innate EGFR tyrosine kinase inhibitor-resistant lung adenocarcinoma cells with wide-type EGFR via downregulation of the IGF-1R expression. J Hematol Oncol. 8:432015. View Article : Google Scholar : PubMed/NCBI

103 

Yang Y, Jiang C, Yang Y, Guo L, Huang J, Liu X, Wu C and Zou J: Silencing of lncRNA-HOTAIR decreases drug resistance of Non-small cell lung cancer cells by inactivating autophagy via suppressing the phosphorylation of ULK1. Biochem Biophys Res Commun. 497:1003–1010. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Chen J, Shen Z, Zheng Y, Wang S and Mao W: Radiotherapy induced Lewis lung cancer cell apoptosis via inactivating β-catenin mediated by upregulated HOTAIR. Int J Clin Exp Pathol. 8:7878–7886. 2015.

105 

Wu D, Li Y, Zhang H and Hu X: Knockdown of lncrna PVT1 enhances radiosensitivity in Non-small cell lung cancer by sponging Mir-195. Cell Physiol Biochem. 42:2453–2466. 2017. View Article : Google Scholar : PubMed/NCBI

106 

Chen JX, Chen M, Zheng YD, Wang SY and Shen ZP: Up-regulation of BRAF activated non-coding RNA is associated with radiation therapy for lung cancer. Biomed Pharmacother. 71:79–83. 2015. View Article : Google Scholar : PubMed/NCBI

107 

Loewen G, Jayawickramarajah J, Zhuo Y and Shan B: Functions of lncRNA HOTAIR in lung cancer. J Hematol Oncol. 7:902014. View Article : Google Scholar : PubMed/NCBI

108 

Nakagawa T, Endo H, Yokoyama M, Abe J, Tamai K, Tanaka N, Sato I, Takahashi S, Kondo T and Satoh K: Large noncoding RNA HOTAIR enhances aggressive biological behavior and is associated with short disease-free survival in human non-small cell lung cancer. Biochem Biophys Res Commun. 436:319–324. 2013. View Article : Google Scholar : PubMed/NCBI

109 

Li N, Wang Y, Liu X, Luo P, Jing W, Zhu M and Tu J: Identification of Circulating long noncoding RNA HOTAIR as a novel biomarker for diagnosis and monitoring of Non-small cell lung cancer. Technol Cancer Res Treat. Jan 1–2017. View Article : Google Scholar : Epub ahead of print.

110 

Wu X, Ruan L, Yang Y and Mei Q: Identification of crucial regulatory relationships between long non-coding RNAs and protein-coding genes in lung squamous cell carcinoma. Mol Cell Probes. 30:146–152. 2016. View Article : Google Scholar : PubMed/NCBI

111 

Cui D, Yu CH, Liu M, Xia QQ, Zhang YF and Jiang WL: Long non-coding RNA PVT1 as a novel biomarker for diagnosis and prognosis of non-small cell lung cancer. Tumour Biol. 37:4127–4134. 2016. View Article : Google Scholar

112 

Yang YR, Zang SZ, Zhong CL, Li YX, Zhao SS and Feng XJ: Increased expression of the lncRNA PVT1 promotes tumori-genesis in non-small cell lung cancer. Int J Clin Exp Pathol. 7:6929–6935. 2014.

113 

Hu X, Bao J, Wang Z, Zhang Z, Gu P, Tao F, Cui D and Jiang W: The plasma lncRNA acting as fingerprint in non-small-cell lung cancer. Tumour Biol. 37:3497–3504. 2016. View Article : Google Scholar

114 

Xie Y, Zhang Y, Du L, Jiang X, Yan S, Duan W, Li J, Zhan Y, Wang L, Zhang S, et al: Circulating long noncoding RNA act as potential novel biomarkers for diagnosis and prognosis of non-small cell lung cancer. Mol Oncol. 12:648–658. 2018. View Article : Google Scholar : PubMed/NCBI

115 

Schmidt LH, Spieker T, Koschmieder S, Schaffers S, Humberg J, Jungen D, Bulk E, Hascher A, Wittmer D, Marra A, et al: The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol. 6:1984–1992. 2011. View Article : Google Scholar : PubMed/NCBI

116 

Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E, et al: MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 22:8031–8041. 2003. View Article : Google Scholar : PubMed/NCBI

117 

Lin L, Li H, Zhu Y, He S and Ge H: Expression of metastasis-associated lung adenocarcinoma transcript 1 long non-coding RNA in vitro and in patients with non-small cell lung cancer. Oncol Lett. 15:9443–9449. 2018.PubMed/NCBI

118 

Tian X and Xu G: Clinical value of lncRNA MALAT1 as a prognostic marker in human cancer: Systematic review and meta-analysis. BMJ Open. 5:e0086532015. View Article : Google Scholar : PubMed/NCBI

119 

Weber DG, Johnen G, Casjens S, Bryk O, Pesch B, Jöckel KH, Kollmeier J and Brüning T: Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer. BMC Res Notes. 6:5182013. View Article : Google Scholar : PubMed/NCBI

120 

Zhang R, Xia Y, Wang Z, Zheng J, Chen Y, Li X, Wang Y and Ming H: Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer. Biochem Biophys Res Commun. 490:406–414. 2017. View Article : Google Scholar : PubMed/NCBI

121 

Sun M, Liu XH, Wang KM, Nie FQ, Kong R, Yang JS, Xia R, Xu TP, Jin FY, Liu ZJ, et al: Downregulation of BRAF activated non-coding RNA is associated with poor prognosis for non-small cell lung cancer and promotes metastasis by affecting epithelial-mesenchymal transition. Mol Cancer. 13:682014. View Article : Google Scholar : PubMed/NCBI

122 

Liang W, Lv T, Shi X, Liu H, Zhu Q, Zeng J, Yang W, Yin J and Song Y: Circulating long noncoding RNA GAS5 is a novel biomarker for the diagnosis of nonsmall cell lung cancer. Medicine (Baltimore). 95:e46082016. View Article : Google Scholar

123 

Tantai J, Hu D, Yang Y and Geng J: Combined identification of long non-coding RNA XIST and HIF1A-AS1 in serum as an effective screening for non-small cell lung cancer. Int J Clin Exp Pathol. 8:7887–7895. 2015.PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 55 Issue 3

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Jiang, L., Li, Z., & Wang, R. (2019). Long non‑coding RNAs in lung cancer: Regulation patterns, biologic function and diagnosis implications (Review). International Journal of Oncology, 55, 585-596. https://doi.org/10.3892/ijo.2019.4850
MLA
Jiang, L., Li, Z., Wang, R."Long non‑coding RNAs in lung cancer: Regulation patterns, biologic function and diagnosis implications (Review)". International Journal of Oncology 55.3 (2019): 585-596.
Chicago
Jiang, L., Li, Z., Wang, R."Long non‑coding RNAs in lung cancer: Regulation patterns, biologic function and diagnosis implications (Review)". International Journal of Oncology 55, no. 3 (2019): 585-596. https://doi.org/10.3892/ijo.2019.4850