Current strategies against persistent human papillomavirus infection (Review)

  • Authors:
    • Yu Liu
    • Hongyi Li
    • Ruyu Pi
    • Yang Yang
    • Xia Zhao
    • Xiaorong Qi
  • View Affiliations

  • Published online on: July 23, 2019     https://doi.org/10.3892/ijo.2019.4847
  • Pages: 570-584
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Human papillomavirus (HPV) is the most common sexually transmitted infection, exhibiting a tropism for the epidermis and mucosae. The link between persistent HPV infection and malignancies involving the anogenital tract as well as the head and neck has been well‑established, and it is estimated that HPV‑related cancers involving various anatomical sites account for 4.5% of all human cancers. Current prophylactic vaccines against HPV have enabled the prevention of associated malignancies. However, the sizeable population base of current infection in whom prophylactic vaccines are not applicable, certain high‑risk HPV types not included in vaccines, and the vast susceptible population in developing countries who do not have access to the costly prophylactic vaccines, put forward an imperative need for effective therapies targeting persistent infection. In this article, the life cycle of HPV, the mechanisms facilitating HPV evasion of recognition and clearance by the host immune system, and the promising therapeutic strategies currently under investigation, particularly antiviral drugs and therapeutic vaccines, are reviewed.

References

1 

Dunne EF, Unger ER, Sternberg M, McQuillan G, Swan DC, Patel SS and Markowitz LE: Prevalence of HPV infection among females in the United States. JAMA. 297:813–819. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, Vignat J, Ferlay J, Bray F, Plummer M and Franceschi S: Global burden of human papil-lomavirus and related diseases. Vaccine. 30(Suppl 5): F12–F23. 2012. View Article : Google Scholar

3 

de Martel C, Plummer M, Vignat J and Franceschi S: Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer. 141:664–670. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Plummer M, de Martel C, Vignat J, Ferlay J, Bray F and Franceschi S: Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob Health. 4:e609–e616. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar

6 

Arbyn M, Castellsagué X, de Sanjosé S, Bruni L, Saraiya M, Bray F and Ferlay J: Worldwide burden of cervical cancer in 2008. Ann Oncol. 22:2675–2686. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Kash N, Lee MA, Kollipara R, Downing C, Guidry J and Tyring SK: Safety and efficacy data on vaccines and immunization to human papillomavirus. J Clin Med. 4:614–633. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Woodman CB, Collins SI and Young LS: The natural history of cervical HPV infection: Unresolved issues. Nat Rev Cancer. 7:11–22. 2007. View Article : Google Scholar

9 

Massad LS, Einstein MH, Huh WK, Katki HA, Kinney WK, Schiffman M, Solomon D, Wentzensen N and Lawson HW: 2012 ASCCP Consensus Guidelines Conference: 2012 updated consensus guidelines for the management of abnormal cervical cancer screening tests and cancer precursors. Obstet Gynecol. 121:829–846. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Giuliano AR, Harris R, Sedjo RL, Baldwin S, Roe D, Papenfuss MR, Abrahamsen M, Inserra P, Olvera S and Hatch K: Incidence, prevalence, and clearance of type-specific human papillomavirus infections: The Young Women's Health Study. J Infect Dis. 186:462–469. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Boshart M, Gissmann L, Ikenberg H, Kleinheinz A, Scheurlen W and Zur Hausen H: A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J. 3:1151–1157. 1984. View Article : Google Scholar : PubMed/NCBI

12 

Dürst M, Gissmann L, Ikenberg H and Zur Hausen H: A papil-lomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA. 80:3812–3815. 1983. View Article : Google Scholar

13 

Tjalma W: HPV negative cervical cancers and primary HPV screening. Facts Views Vis Obgyn. 10:107–113. 2018.

14 

Muñoz N, Bosch FX, de Sanjosé S, Herrero R, Castellsagué X, Shah KV, Snijders PJ and Meijer CJ; International Agency for Research on Cancer Multicenter Cervical Cancer Study Group: Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 348:518–527. 2003. View Article : Google Scholar : PubMed/NCBI

15 

de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, Tous S, Felix A, Bravo LE, Shin HR, et al: Human papillomavirus genotype attribution in invasive cervical cancer: A retrospective cross-sectional worldwide study. Lancet Oncol. 11:1048–1056. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Abramowitz L, Jacquard AC, Jaroud F, Haesebaert J, Siproudhis L, Pradat P, Aynaud O, Leocmach Y, Soubeyrand B, Dachez R, et al: Human papillomavirus genotype distribution in anal cancer in France: The EDiTH V study. Int J Cancer. 129:433–439. 2011. View Article : Google Scholar

17 

De Vuyst H, Clifford GM, Nascimento MC, Madeleine MM and Franceschi S: Prevalence and type distribution of human papillomavirus in carcinoma and intraepithelial neoplasia of the vulva, vagina and anus: A meta-analysis. Int J Cancer. 124:1626–1636. 2009. View Article : Google Scholar

18 

Stanley MA, Winder DM, Sterling JC and Goon PK: HPV infection, anal intra-epithelial neoplasia (AIN) and anal cancer: Current issues. BMC Cancer. 12:3982012. View Article : Google Scholar : PubMed/NCBI

19 

van Seters M, van Beurden M and de Craen AJ: Is the assumed natural history of vulvar intraepithelial neoplasia III based on enough evidence? A systematic review of 3322 published patients. Gynecol Oncol. 97:645–651. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Gillison ML, Broutian T, Pickard RK, Tong ZY, Xiao W, Kahle L, Graubard BI and Chaturvedi AK: Prevalence of oral HPV infection in the United States, 2009-2010. JAMA. 307:693–703. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, Jiang B, Goodman MT, Sibug-Saber M, Cozen W, et al: Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 29:4294–4301. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Koh JS, Lee SS, Baek HJ and Kim YI: No association of high-risk human papillomavirus with esophageal squamous cell carcinomas among Koreans, as determined by polymerase chain reaction. Dis Esophagus. 21:114–117. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Zhang SK, Guo LW, Chen Q, Zhang M, Liu SZ, Quan PL, Lu JB and Sun XB: Prevalence of human papillomavirus 16 in esophageal cancer among the Chinese population: A systematic review and meta-analysis. Asian Pac J Cancer Prev. 15:10143–10149. 2014. View Article : Google Scholar

24 

Guo F, Liu Y, Wang X, He Z, Weiss NS, Madeleine MM, Liu F, Tian X, Song Y, Pan Y, et al: Human papillomavirus infection and esophageal squamous cell carcinoma: A case-control study. Cancer Epidemiol Biomarkers Prev. 21:780–785. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Yong F, Xudong N and Lijie T: Human papillomavirus types 16 and 18 in esophagus squamous cell carcinoma: A meta-analysis. Ann Epidemiol. 23:726–734. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Liyanage SS, Rahman B, Ridda I, Newall AT, Tabrizi SN, Garland SM, Segelov E, Seale H, Crowe PJ, Moa A and Macintyre CR: The aetiological role of human papillomavirus in oesophageal squamous cell carcinoma: A meta-analysis. PLoS One. 8:e692382013. View Article : Google Scholar : PubMed/NCBI

27 

Sitas F, Egger S, Urban MI, Taylor PR, Abnet CC, Boffetta P, O'Connell DL, Whiteman DC, Brennan P, Malekzadeh R, et al: InterSCOPE study: Associations between esophageal squamous cell carcinoma and human papillomavirus serological markers. J Natl Cancer Inst. 104:147–158. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Cancer Genome Atlas Research Network; Analysis Working Group; Asan University; BC Cancer Agency; Brigham and Women's Hospital; Broad Institute; Brown University; Case Western Reserve University; Dana-Farber Cancer Institute; Duke University; et al: Integrated genomic characterization of oesophageal carcinoma. Nature. 541:169–175. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Liu W, Snell JM, Jeck WR, Hoadley KA, Wilkerson MD, Parker JS, Patel N, Mlombe YB, Mulima G, Liomba NG, et al: Subtyping sub-Saharan esophageal squamous cell carcinoma by comprehensive molecular analysis. JCI Insight. 1:e887552016. View Article : Google Scholar : PubMed/NCBI

30 

Guo L, Liu S, Zhang S, Chen Q, Zhang M, Quan P and Sun XB: Human papillomavirus-related esophageal cancer survival: A systematic review and meta-analysis. Medicine (Baltimore). 95:e53182016. View Article : Google Scholar

31 

Kilkenny M, Merlin K, Young R and Marks R: The prevalence of common skin conditions in Australian school students: 1. Common, plane and plantar viral warts. Br J Dermatol. 138:840–845. 1998. View Article : Google Scholar : PubMed/NCBI

32 

Orth G: Host defenses against human papillomaviruses: Lessons from epidermodysplasia verruciformis. Curr Top Microbiol Immunol. 321:59–83. 2008.PubMed/NCBI

33 

Shanmugasundaram S and You J: Targeting persistent human papillomavirus infection. Viruses. 9:pii. E2292017. View Article : Google Scholar : PubMed/NCBI

34 

Roberts JN, Buck CB, Thompson CD, Kines R, Bernardo M, Choyke PL, Lowy DR and Schiller JT: Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med. 13:857–861. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Doorbar J: Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond). 110:525–541. 2006. View Article : Google Scholar

36 

Schiller JT, Day PM and Kines RC: Current understanding of the mechanism of HPV infection. Gynecol Oncol. 118(1 Suppl): S12–S17. 2010. View Article : Google Scholar : PubMed/NCBI

37 

Giroglou T, Florin L, Schäfer F, Streeck RE and Sapp M: Human papillomavirus infection requires cell surface heparan sulfate. J Virol. 75:1565–1570. 2001. View Article : Google Scholar : PubMed/NCBI

38 

Selinka HC, Giroglou T, Nowak T, Christensen ND and Sapp M: Further evidence that papillomavirus capsids exist in two distinct conformations. J Virol. 77:12961–12967. 2003. View Article : Google Scholar : PubMed/NCBI

39 

Day PM, Gambhira R, Roden RB, Lowy DR and Schiller JT: Mechanisms of human papillomavirus type 16 neutralization by l2 cross-neutralizing and l1 type-specific antibodies. J Virol. 82:4638–4646. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Kines RC, Thompson CD, Lowy DR, Schiller JT and Day PM: The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci USA. 106:20458–20463. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Richards KF, Bienkowska-Haba M, Dasgupta J, Chen XS and Sapp M: Multiple heparan sulfate binding site engagements are required for the infectious entry of human papillomavirus type 16. J Virol. 87:11426–11437. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Richards RM, Lowy DR, Schiller JT and Day PM: Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci USA. 103:1522–1527. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Evander M, Frazer IH, Payne E, Qi YM, Hengst K and McMillan NA: Identification of the alpha6 integrin as a candidate receptor for papillomaviruses. J Virol. 71:2449–2456. 1997.PubMed/NCBI

44 

Abban CY and Meneses PI: Usage of heparan sulfate, integrins, and FAK in HPV16 infection. Virology. 403:1–16. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Huang HS and Lambert PF: Use of an in vivo animal model for assessing the role of integrin a(6)β(4) and syndecan-1 in early steps in papillomavirus infection. Virology. 433:395–400. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Aksoy P, Abban CY, Kiyashka E, Qiang W and Meneses PI: HPV16 infection of HaCaTs is dependent on β4 integrin, and a6 integrin processing. Virology. 449:45–52. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Scheffer KD, Berditchevski F and Florin L: The tetraspanin CD151 in papillomavirus infection. Viruses. 6:893–908. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Spoden G, Freitag K, Husmann M, Boller K, Sapp M, Lambert C and Florin L: Clathrin- and caveolin-independent entry of human papillomavirus type 16-involvement of tetraspanin-enriched microdomains (TEMs). PLoS One. 3:e33132008. View Article : Google Scholar

49 

Scheffer KD, Gawlitza A, Spoden GA, Zhang XA, Lambert C, Berditchevski F and Florin L: Tetraspanin CD151 mediates papillomavirus type 16 endocytosis. J Virol. 87:3435–3446. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Surviladze Z, Dziduszko A and Ozbun MA: Essential roles for soluble virion-associated heparan sulfonated proteoglycans and growth factors in human papillomavirus infections. PLoS Pathog. 8:e10025192012. View Article : Google Scholar : PubMed/NCBI

51 

Cerqueira C, Samperio Ventayol P, Vogeley C and Schelhaas M: Kallikrein-8p roteolytically processes human papillomaviruses in the extracellular space to facilitate entry into host cells. J Virol. 89:7038–7052. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Aksoy P, Gottschalk EY and Meneses PI: HPV entry into cells. Mutat Res Rev Mutat Res. 772:13–22. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Pyeon D, Pearce SM, Lank SM, Ahlquist P and Lambert PF: Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog. 5:e10003182009. View Article : Google Scholar : PubMed/NCBI

54 

Parish JL, Bean AM, Park RB and Androphy EJ: ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Mol Cell. 24:867–876. 2006. View Article : Google Scholar : PubMed/NCBI

55 

McBride AA: Replication and partitioning of papillomavirus genomes. Adv Virus Res. 72:155–205. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Tomaić V, Pim D and Banks L: The stability of the human papillomavirus E6 oncoprotein is E6AP dependent. Virology. 393:7–10. 2009. View Article : Google Scholar

57 

Egawa N, Nakahara T, Ohno S, Narisawa-Saito M, Yugawa T, Fujita M, Yamato K, Natori Y and Kiyono T: The E1 protein of human papillomavirus type 16 is dispensable for maintenance replication of the viral genome. J Virol. 86:3276–3283. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR and Stanley MA: The biology and life-cycle of human papillomavi-ruses. Vaccine. 30(Suppl 5): F55–F70. 2012. View Article : Google Scholar

59 

Genther SM, Sterling S, Duensing S, Münger K, Sattler C and Lambert PF: Quantitative role of the human papillomavirus type 16 E5 gene during the productive stage of the viral life cycle. J Virol. 77:2832–2842. 2003. View Article : Google Scholar : PubMed/NCBI

60 

Fehrmann F, Klumpp DJ and Laimins LA: Human papilloma-virus type 31 E5 protein supports cell cycle progression and activates late viral functions upon epithelial differentiation. J Virol. 77:2819–2831. 2003. View Article : Google Scholar : PubMed/NCBI

61 

Pim D, Collins M and Banks L: Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene. 7:27–32. 1992.PubMed/NCBI

62 

Wang Q, Griffin H, Southern S, Jackson D, Martin A, McIntosh P, Davy C, Masterson PJ, Walker PA, Laskey P, et al: Functional analysis of the human papillomavirus type 16 E1=E4 protein provides a mechanism for in vivo and in vitro keratin filament reorganization. J Virol. 78:821–833. 2004. View Article : Google Scholar :

63 

McIntosh PB, Martin SR, Jackson DJ, Khan J, Isaacson ER, Calder L, Raj K, Griffin HM, Wang Q, Laskey P, et al: Structural analysis reveals an amyloid form of the human papillomavirus type 16 E1-E4 protein and provides a molecular basis for its accumulation. J Virol. 82:8196–8203. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Brown DR, Kitchin D, Qadadri B, Neptune N, Batteiger T and Ermel A: The human papillomavirus type 11 E1-E4 protein is a transglutaminase 3 substrate and induces abnormalities of the cornified cell envelope. Virology. 345:290–298. 2006. View Article : Google Scholar

65 

Zhao KN and Chen J: Codon usage roles in human papilloma-virus. Rev Med Virol. 21:397–411. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Zhou J, Liu WJ, Peng SW, Sun XY and Frazer I: Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability. J Virol. 73:4972–4982. 1999.PubMed/NCBI

67 

Li S, Labrecque S, Gauzzi MC, Cuddihy AR, Wong AH, Pellegrini S, Matlashewski GJ and Koromilas AE: The human papilloma virus (HPV)-18 E6 oncoprotein physically associates with Tyk2 and impairs Jak-STAT activation by interferon-alpha. Oncogene. 18:5727–5737. 1999. View Article : Google Scholar : PubMed/NCBI

68 

Ronco LV, Karpova AY, Vidal M and Howley PM: Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev. 12:2061–2072. 1998. View Article : Google Scholar : PubMed/NCBI

69 

Um SJ, Rhyu JW, Kim EJ, Jeon KC, Hwang ES and Park JS: Abrogation of IRF-1 response by high-risk HPV E7 protein in vivo. Cancer Lett. 179:205–212. 2002. View Article : Google Scholar : PubMed/NCBI

70 

The human papilloma-virus E7 protein is able to inhibit the antiviral and anti-growth functions of interferon-alpha. Virology. 277:411–419. 2000. View Article : Google Scholar

71 

Evans M, Borysiewicz LK, Evans AS, Rowe M, Jones M, Gileadi U, Cerundolo V and Man S: Antigen processing defects in cervical carcinomas limit the presentation of a CTL epitope from human papillomavirus 16 E6. J Immunol. 167:5420–5428. 2001. View Article : Google Scholar : PubMed/NCBI

72 

Matthews K, Leong CM, Baxter L, Inglis E, Yun K, Bäckström BT, Doorbar J and Hibma M: Depletion of Langerhans cells in human papillomavirus type 16-infected skin is associated with E6-mediated down regulation of E-cadherin. J Virol. 77:8378–8385. 2003. View Article : Google Scholar : PubMed/NCBI

73 

D'Costa ZJ, Leong CM, Shields J, Matthews C and Hibma MH: Screening of drugs to counteract human papillomavirus 16 E6 repression of E-cadherin expression. Invest New Drugs. 30:2236–2251. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Fausch SC, Fahey LM, Da Silva DM and Kast WM: Human papillomavirus can escape immune recognition through Langerhans cell phosphoinositide 3-kinase activation. J Immunol. 174:7172–7178. 2005. View Article : Google Scholar : PubMed/NCBI

75 

Fahey LM, Raff AB, Da Silva DM and Kast WM: A major role for the minor capsid protein of human papillomavirus type 16 in immune escape. J Immunol. 183:6151–6156. 2009. View Article : Google Scholar : PubMed/NCBI

76 

Mota F, Rayment N, Chong S, Singer A and Chain B: The antigen-presenting environment in normal and human papillomavirus (HPV)-related premalignant cervical epithelium. Clin Exp Immunol. 116:33–40. 1999. View Article : Google Scholar : PubMed/NCBI

77 

de Jong A, van Poelgeest MI, van der Hulst JM, Drijfhout JW, Fleuren GJ, Melief CJ, Kenter G, Offringa R and van der Burg SH: Human papillomavirus type 16-positive cervical cancer is associated with impaired CD4+ T-cell immunity against early antigens E2 and E6. Cancer Res. 64:5449–5455. 2004. View Article : Google Scholar : PubMed/NCBI

78 

Rodriguez JA, Galeano L, Palacios DM, Gómez C, Serrano ML, Bravo MM and Combita AL: Altered HLA class I and HLA-G expression is associated with IL-10 expression in patients with cervical cancer. Pathobiology. 79:72–83. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Le Gal FA, Riteau B, Sedlik C, Khalil-Daher I, Menier C, Dausset J, Guillet JG, Carosella ED and Rouas-Freiss N: HLA-G-mediated inhibition of antigen-specific cytotoxic T lymphocytes. Int Immunol. 11:1351–1356. 1999. View Article : Google Scholar : PubMed/NCBI

80 

Marchal-Bras-Goncalves R, Rouas-Freiss N, Connan F, Choppin J, Dausset J, Carosella ED, Kirszenbaum M and Guillet J: A soluble HLA-G protein that inhibits natural killer cell-mediated cytotoxicity. Transplant Proc. 33:2355–2359. 2001. View Article : Google Scholar : PubMed/NCBI

81 

Gros F, Cabillic F, Toutirais O, Maux AL, Sebti Y and Amiot L: Soluble HLA-G molecules impair natural killer/dendritic cell crosstalk via inhibition of dendritic cells. Eur J Immunol. 38:742–749. 2008. View Article : Google Scholar : PubMed/NCBI

82 

Kabsch K, Mossadegh N, Kohl A, Komposch G, Schenkel J, Alonso A and Tomakidi P: The HPV-16 E5 protein inhibits TRAIL- and FasL-mediated apoptosis in human keratinocyte raft cultures. Intervirology. 47:48–56. 2004. View Article : Google Scholar : PubMed/NCBI

83 

Venuti A, Paolini F, Nasir L, Corteggio A, Roperto S, Campo MS and Borzacchiello G: Papillomavirus E5: The smallest oncopro-tein with many functions. Mol Cancer. 10:1402011. View Article : Google Scholar

84 

Lagunas-Martínez A, Madrid-Marina V and Gariglio P: Modulation of apoptosis by early human papillomavirus proteins in cervical cancer. Biochim Biophys Acta. 1805:6–16. 2010.

85 

Gross-Mesilaty S, Reinstein E, Bercovich B, Tobias KE, Schwartz AL, Kahana C and Ciechanover A: Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc Natl Acad Sci USA. 95:8058–8063. 1998. View Article : Google Scholar : PubMed/NCBI

86 

Filippova M, Parkhurst L and Duerksen-Hughes PJ: The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J Biol Chem. 279:25729–25744. 2004. View Article : Google Scholar : PubMed/NCBI

87 

Garnett TO, Filippova M and Duerksen-Hughes PJ: Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis. Cell Death Differ. 13:1915–1926. 2006. View Article : Google Scholar : PubMed/NCBI

88 

Garnett TO and Duerksen-Hughes PJ: Modulation of apoptosis by human papillomavirus (HPV) oncoproteins. Arch Virol. 151:2321–2335. 2006. View Article : Google Scholar : PubMed/NCBI

89 

Johnson JA and Gangemi JD: Selective inhibition of human papillomavirus-induced cell proliferation by (S)-1-[3-hydroxy-2-(phosphonylmethoxy)propyl]cytosine. Antimicrob Agents Chemother. 43:1198–1205. 1999. View Article : Google Scholar : PubMed/NCBI

90 

Beadle JR, Valiaeva N, Yang G, Yu JH, Broker TR, Aldern KA, Harden EA, Keith KA, Prichard MN, Hartman T, et al: Synthesis and antiviral evaluation of octadecyloxyethyl Benzyl 9-[(2-Phosphonomethoxy)ethyl]guanine (ODE-Bn-PMEG), a potent inhibitor of transient HPV DNA amplification. J Med Chem. 59:10470–10478. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Van Pachterbeke C, Bucella D, Rozenberg S, Manigart Y, Gilles C, Larsimont D, Vanden Houte K, Reynders M, Snoeck R, Bossens M, et al: Topical treatment of CIN 2+ by cidofovir: Results of a phase II, double-blind, prospective, placebo-controlled study. Gynecol Oncol. 115:69–74. 2009. View Article : Google Scholar : PubMed/NCBI

92 

Tristram A and Fiander A: Clinical responses to Cidofovir applied topically to women with high grade vulval intraepithe-lial neoplasia. Gynecol Oncol. 99:652–655. 2005. View Article : Google Scholar : PubMed/NCBI

93 

Stier EA, Goldstone SE, Einstein MH, Jay N, Berry JM, Wilkin T, Lee JY, Darragh TM, Da Costa M, Panther L, et al: Safety and efficacy of topical cidofovir to treat high-grade perianal and vulvar intraepithelial neoplasia in HIV-positive men and women. AIDS. 27:545–551. 2013. View Article : Google Scholar :

94 

Pertusati F, Hinsinger K, Flynn ÁS, Powell N, Tristram A, Balzarini J and McGuigan C: PMPA and PMEA prodrugs for the treatment of HIV infections and human papillomavirus (HPV) associated neoplasia and cancer. Eur J Med Chem. 78:259–268. 2014. View Article : Google Scholar : PubMed/NCBI

95 

Wolfgang GH, Shibata R, Wang J, Ray AS, Wu S, Doerrfler E, Reiser H, Lee WA, Birkus G, Christensen ND, et al: GS-9191 is a novel topical prodrug of the nucleotide analog 9-(2-phosphonylmethoxyethyl)guanine with antiproliferative activity and possible utility in the treatment of human papilloma-virus lesions. Antimicrob Agents Chemother. 53:2777–2784. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Yoakim C, Ogilvie WW, Goudreau N, Naud J, Haché B, O'Meara JA, Cordingley MG, Archambault J and White PW: Discovery of the first series of inhibitors of human papilloma-virus type 11: Inhibition of the assembly of the E1-E2-Origin DNA complex. Bioorg Med Chem Lett. 13:2539–2541. 2003. View Article : Google Scholar : PubMed/NCBI

97 

White PW, Titolo S, Brault K, Thauvette L, Pelletier A, Welchner E, Bourgon L, Doyon L, Ogilvie WW, Yoakim C, et al: Inhibition of human papillomavirus DNA replication by small molecule antagonists of the E1-E2 protein interaction. J Biol Chem. 278:26765–26772. 2003. View Article : Google Scholar : PubMed/NCBI

98 

Wang Y, Coulombe R, Cameron DR, Thauvette L, Massariol MJ, Amon LM, Fink D, Titolo S, Welchner E, Yoakim C, et al: Crystal structure of the E2 transactivation domain of human papillomavirus type 11 bound to a protein interaction inhibitor. J Biol Chem. 279:6976–6985. 2004. View Article : Google Scholar

99 

Schaal TD, Mallet WG, McMinn DL, Nguyen NV, Sopko MM, John S and Parekh BS: Inhibition of human papilloma virus E2 DNA binding protein by covalently linked polyamides. Nucleic Acids Res. 31:1282–1291. 2003. View Article : Google Scholar : PubMed/NCBI

100 

Edwards TG, Koeller KJ, Slomczynska U, Fok K, Helmus M, Bashkin JK and Fisher C: HPV episome levels are potently decreased by pyrrole-imidazole polyamides. Antiviral Res. 91:177–186. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Vasilieva E, Niederschulte J, Song Y, Harris GD Jr, Koeller KJ, Liao P, Bashkin JK and Dupureur CM: Interactions of two large antiviral polyamides with the long control region of HPV16. Biochimie. 127:103–114. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Wilson VG, West M, Woytek K and Rangasamy D: Papillomavirus E1 proteins: Form, function, and features. Virus Genes. 24:275–290. 2002. View Article : Google Scholar : PubMed/NCBI

103 

Stenlund A: Initiation of DNA replication: Lessons from viral initiator proteins. Nat Rev Mol Cell Biol. 4:777–785. 2003. View Article : Google Scholar : PubMed/NCBI

104 

Faucher AM, White PW, Brochu C, Grand-Maître C, Rancourt J and Fazal G: Discovery of small-molecule inhibitors of the ATPase activity of human papillomavirus E1 helicase. J Med Chem. 47:18–21. 2004. View Article : Google Scholar

105 

White PW, Faucher AM, Massariol MJ, Welchner E, Rancourt J, Cartier M and Archambault J: Biphenylsulfonacetic acid inhibitors of the human papillomavirus type 6 E1 helicase inhibit ATP hydrolysis by an allosteric mechanism involving tyrosine 486. Antimicrob Agents Chemother. 49:4834–4842. 2005. View Article : Google Scholar : PubMed/NCBI

106 

Be X, Hong Y, Wei J, Androphy EJ, Chen JJ and Baleja JD: Solution structure determination and mutational analysis of the papillomavirus E6 interacting peptide of E6AP. Biochemistry. 40:1293–1299. 2001. View Article : Google Scholar : PubMed/NCBI

107 

Baleja JD, Cherry JJ, Liu Z, Gao H, Nicklaus MC, Voigt JH, Chen JJ and Androphy EJ: Identification of inhibitors to papillomavirus type 16 E6 protein based on three-dimensional structures of interacting proteins. Antiviral Res. 72:49–59. 2006. View Article : Google Scholar : PubMed/NCBI

108 

Longworth MS and Laimins LA: The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J Virol. 78:3533–3541. 2004. View Article : Google Scholar : PubMed/NCBI

109 

Brehm A, Nielsen SJ, Miska EA, McCance DJ, Reid JL, Bannister AJ and Kouzarides T: The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. Embo J. 18:2449–2458. 1999. View Article : Google Scholar : PubMed/NCBI

110 

Lu Q, Yang YT and Chen CS, Davis M, Byrd JC, Etherton MR, Umar A and Chen CS: Zn2+-chelating motif-tethered short-chain fatty acids as a novel class of histone deacetylase inhibitors. J Med Chem. 47:467–474. 2004. View Article : Google Scholar : PubMed/NCBI

111 

Suzuki T, Matsuura A, Kouketsu A, Nakagawa H and Miyata N: Identification of a potent non-hydroxamate histone deacetylase inhibitor by mechanism-based drug design. Bioorg Med Chem Lett. 15:331–335. 2005. View Article : Google Scholar

112 

Suzuki T, Nagano Y, Kouketsu A, Matsuura A, Maruyama S, Kurotaki M, Nakagawa H and Miyata N: Novel inhibitors of human histone deacetylases: Design, synthesis, enzyme inhibition, and cancer cell growth inhibition of SAHA-based non-hydroxamates. J Med Chem. 48:1019–1032. 2005. View Article : Google Scholar : PubMed/NCBI

113 

Suzuki T, Ando T, Tsuchiya K, Fukazawa N, Saito A, Mariko Y, Yamashita T and Nakanishi O: Synthesis and histone deacety-lase inhibitory activity of new benzamide derivatives. J Med Chem. 42:3001–3003. 1999. View Article : Google Scholar : PubMed/NCBI

114 

Nakajima H, Kim YB, Terano H, Yoshida M and Horinouchi S: FR901228, a potent antitumor antibiotic, is a novel histone deacetylase inhibitor. Exp Cell Res. 241:126–133. 1998. View Article : Google Scholar : PubMed/NCBI

115 

Finzer P, Ventz R, Kuntzen C, Seibert N, Soto U and Rösl F: Growth arrest of HPV-positive cells after histone deacetylase inhibition is independent of E6/E7 oncogene expression. Virology. 304:265–273. 2002. View Article : Google Scholar : PubMed/NCBI

116 

Finzer P, Kuntzen C, Soto U, zur Hausen H and Rösl F: Inhibitors of histone deacetylase arrest cell cycle and induce apoptosis in cervical carcinoma cells circumventing human papillomavirus oncogene expression. Oncogene. 20:4768–4776. 2001. View Article : Google Scholar : PubMed/NCBI

117 

Chavez-Blanco A, Perez-Plasencia C, Perez-Cardenas E, Carrasco-Legleu C, Rangel-Lopez E, Segura-Pacheco B, Taja-Chayeb L, Trejo-Becerril C, Gonzalez-Fierro A, Candelaria M, et al: Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines. Cancer Cell Int. 6:22006. View Article : Google Scholar : PubMed/NCBI

118 

Hebner CM and Laimins LA: Human papillomaviruses: Basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol. 16:83–97. 2006. View Article : Google Scholar

119 

Lin BY, Ma T, Liu JS, Kuo SR, Jin G, Broker TR, Harper JW and Chow LT: HeLa cells are phenotypically limiting in cyclin E/CDK2 for efficient human papillomavirus DNA replication. J Biol Chem. 275:6167–6174. 2000. View Article : Google Scholar : PubMed/NCBI

120 

Ma T, Zou N, Lin BY, Chow LT and Harper JW: Interaction between cyclin-dependent kinases and human papillomavirus replication-initiation protein E1 is required for efficient viral replication. Proc Natl Acad Sci USA. 96:382–387. 1999. View Article : Google Scholar : PubMed/NCBI

121 

Cueille N, Nougarede R, Mechali F, Philippe M and Bonne-Andrea C: Functional interaction between the bovine papillomavirus virus type 1 replicative helicase E1 and cyclin E-Cdk2. J Virol. 72:7255–7262. 1998.PubMed/NCBI

122 

Duensing S and Münger K: Human papillomaviruses and centrosome duplication errors: Modeling the origins of genomic instability. Oncogene. 21:6241–6248. 2002. View Article : Google Scholar : PubMed/NCBI

123 

Duensing S and Münger K: Centrosome abnormalities and genomic instability induced by human papillomavirus oncoproteins. Prog Cell Cycle Res. 5:383–391. 2003.PubMed/NCBI

124 

Duensing S, Duensing A, Flores ER, Do A, Lambert PF and Münger K: Centrosome abnormalities and genomic instability by episomal expression of human papillomavirus type 16 in raft cultures of human keratinocytes. J Virol. 75:7712–7716. 2001. View Article : Google Scholar : PubMed/NCBI

125 

Hsu CY, Mechali F and Bonne-Andrea C: Nucleocytoplasmic shuttling of bovine papillomavirus E1 helicase downregulates viral DNA replication in S phase. J Virol. 81:384–394. 2007. View Article : Google Scholar :

126 

Deng W, Lin BY, Jin G, Wheeler CG, Ma T, Harper JW, Broker TR and Chow LT: Cyclin/CDK regulates the nucleocy-toplasmic localization of the human papillomavirus E1 DNA helicase. J Virol. 78:13954–13965. 2004. View Article : Google Scholar : PubMed/NCBI

127 

Schang LM: Cyclin-dependent kinases as cellular targets for antiviral drugs. J Antimicrob Chemother. 50:779–792. 2002. View Article : Google Scholar : PubMed/NCBI

128 

Vitali L, Yakisich JS, Vita MF, Fernandez A, Settembrini L, Siden A, Cruz M, Carminatti H, Casas O and Idoyaga Vargas V: Roscovitine inhibits ongoing DNA synthesis in human cervical cancer. Cancer Lett. 180:7–12. 2002. View Article : Google Scholar : PubMed/NCBI

129 

Duensing S, Duensing A, Lee DC, Edwards KM, Piboonniyom SO, Manuel E, Skaltsounis L, Meijer L and Münger K: Cyclin-dependent kinase inhibitor indirubin-3′-oxime selectively inhibits human papillomavirus type 16 E7-induced numerical centrosome anomalies. Oncogene. 23:8206–8215. 2004. View Article : Google Scholar : PubMed/NCBI

130 

Yan L, Lai F, Chen X and Xiao Z: Discovery of novel indirubin-3′-monoxime derivatives as potent inhibitors against CDK2 and CDK9. Bioorg Med Chem Lett. 25:2447–2451. 2015. View Article : Google Scholar : PubMed/NCBI

131 

Gloss B and Bernard HU: The E6/E7 promoter of human papillomavirus type 16 is activated in the absence of E2 proteins by a sequence-aberrant Sp1 distal element. J Virol. 64:5577–5584. 1990.PubMed/NCBI

132 

Butz K and Hoppe-Seyler F: Transcriptional control of human papillomavirus (HPV) oncogene expression: Composition of the HPV type 18 upstream regulatory region. J Virol. 67:6476–6486. 1993.PubMed/NCBI

133 

Craigo J, Callahan M, Huang RC and DeLucia AL: Inhibition of human papillomavirus type 16 gene expression by nordihydroguaiaretic acid plant lignan derivatives. Antiviral Res. 47:19–28. 2000. View Article : Google Scholar : PubMed/NCBI

134 

Heller JD, Kuo J, Wu TC, Kast WM and Huang RC: Tetra-O-methyl nordihydroguaiaretic acid induces G2 arrest in mammalian cells and exhibits tumoricidal activity in vivo. Cancer Res. 61:5499–5504. 2001.PubMed/NCBI

135 

Vink MA, Bogaards JA, van Kemenade FJ, de Melker HE, Meijer CJ and Berkhof J: Clinical progression of high-grade cervical intraepithelial neoplasia: Estimating the time to preclinical cervical cancer from doubly censored national registry data. Am J Epidemiol. 178:1161–1169. 2013. View Article : Google Scholar : PubMed/NCBI

136 

Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck B, Stremlau A and Zur Hausen H: Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 314:111–114. 1985. View Article : Google Scholar : PubMed/NCBI

137 

Yu T, Ferber MJ, Cheung TH, Chung TK, Wong YF and Smith DI: The role of viral integration in the development of cervical cancer. Cancer Genet Cytogenet. 158:27–34. 2005. View Article : Google Scholar : PubMed/NCBI

138 

Jeon S, Allen-Hoffmann BL and Lambert PF: Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol. 69:2989–2997. 1995.PubMed/NCBI

139 

Jeon S and Lambert PF: Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: Implications for cervical carcinogenesis. Proc Natl Acad Sci USA. 92:1654–1658. 1995. View Article : Google Scholar : PubMed/NCBI

140 

Souders NC, Sewell DA, Pan ZK, Hussain SF, Rodriguez A, Wallecha A and Paterson Y: Listeria-based vaccines can overcome tolerance by expanding low avidity CD8+ T cells capable of eradicating a solid tumor in a transgenic mouse model of cancer. Cancer Immun. 7:22007.PubMed/NCBI

141 

Sewell DA, Pan ZK and Paterson Y: Listeria-based HPV-16 E7 vaccines limit autochthonous tumor growth in a transgenic mouse model for HPV-16 transformed tumors. Vaccine. 26:5315–5320. 2008. View Article : Google Scholar : PubMed/NCBI

142 

Adachi K, Kawana K, Yokoyama T, Fujii T, Tomio A, Miura S, Tomio K, Kojima S, Oda K, Sewaki T, et al: Oral immunization with a Lactobacillus casei vaccine expressing human papil-lomavirus (HPV) type 16 E7 is an effective strategy to induce mucosal cytotoxic lymphocytes against HPV16 E7. Vaccine. 28:2810–2817. 2010. View Article : Google Scholar : PubMed/NCBI

143 

Bermudez-Humaran LG, Langella P, Miyoshi A, Gruss A, Guerra RT, Montes de Oca-Luna R and Le Loir Y: Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl Environ Microbiol. 68:917–922. 2002. View Article : Google Scholar : PubMed/NCBI

144 

Bermudez-Humaran LG, Cortes-Perez NG, Le Loir Y, Alcocer-González JM, Tamez-Guerra RS, de Oca-Luna RM and Langella P: An inducible surface presentation system improves cellular immunity against human papillomavirus type 16 E7 antigen in mice after nasal administration with recombinant lactococci. J Med Microbiol. 53:427–433. 2004. View Article : Google Scholar : PubMed/NCBI

145 

Cortes-Perez NG, Azevedo V, Alcocer-González JM, Rodriguez-Padilla C, Tamez-Guerra RS, Corthier G, Gruss A, Langella P and Bermúdez-Humarán LG: Cell-surface display of E7 antigen from human papillomavirus type-16 in Lactococcus lactis and in Lactobacillus plantarum using a new cell-wall anchor from lactobacilli. J Drug Target. 13:89–98. 2005. View Article : Google Scholar : PubMed/NCBI

146 

Krul MR, Tijhaar EJ, Kleijne JA, Van Loon AM, Nievers MG, Schipper H, Geerse L, Van der Kolk M, Steerenberg PA, Mooi FR and Den Otter W: Induction of an antibody response in mice against human papillomavirus (HPV) type 16 after immunization with HPV recombinant Salmonella strains. Cancer Immunol Immunother. 43:44–48. 1996. View Article : Google Scholar : PubMed/NCBI

147 

Kawana K, Adachi K, Kojima S, Taguchi A, Tomio K, Yamashita A, Nishida H, Nagasaka K, Arimoto T, Yokoyama T, et al: Oral vaccination against HPV E7 for treatment of cervical intraepithelial neoplasia grade 3 (CIN3) elicits E7-specific mucosal immunity in the cervix of CIN3 patients. Vaccine. 32:6233–6239. 2014. View Article : Google Scholar : PubMed/NCBI

148 

Schnupf P and Portnoy DA: Listeriolysin O: A phagosome-specific lysin. Microbes Infect. 9:1176–1187. 2007. View Article : Google Scholar : PubMed/NCBI

149 

Chen Z, Ozbun L, Chong N, Wallecha A, Berzofsky JA and Khleif SN: Episomal expression of truncated listeriolysin O in LmddA-LLO-E7 vaccine enhances antitumor efficacy by preferentially inducing expansions of CD4+FoxP3- and CD8+ T cells. Cancer Immunol Res. 2:911–922. 2014. View Article : Google Scholar : PubMed/NCBI

150 

Peters C and Paterson Y: Enhancing the immunogenicity of bioengineered Listeria monocytogenes by passaging through live animal hosts. Vaccine. 21:1187–1194. 2003. View Article : Google Scholar : PubMed/NCBI

151 

Maciag PC, Radulovic S and Rothman J: The first clinical use of a live-attenuated Listeria monocytogenes vaccine: A Phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine. 27:3975–3983. 2009. View Article : Google Scholar : PubMed/NCBI

152 

Borysiewicz LK, Fiander A, Nimako M, Man S, Wilkinson GW, Westmoreland D, Evans AS, Adams M, Stacey SN, Boursnell ME, et al: A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet. 347:1523–1527. 1996. View Article : Google Scholar : PubMed/NCBI

153 

Kaufmann AM, Stern PL, Rankin EM, Sommer H, Nuessler V, Schneider A, Adams M, Onon TS, Bauknecht T, Wagner U, et al: Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin Cancer Res. 8:3676–3685. 2002.PubMed/NCBI

154 

Baldwin PJ, van der Burg SH, Boswell CM, Offringa R, Hickling JK, Dobson J, Roberts JS, Latimer JA, Moseley RP, Coleman N, et al: Vaccinia-expressed human papillomavirus 16 and 18 e6 and e7 as a therapeutic vaccination for vulval and vaginal intraepithelial neoplasia. Clin Cancer Res. 9:5205–5213. 2003.PubMed/NCBI

155 

Brun JL, Dalstein V, Leveque J, Mathevet P, Raulic P, Baldauf JJ, Scholl S, Huynh B, Douvier S, Riethmuller D, et al: Regression of high-grade cervical intraepithelial neoplasia with TG4001 targeted immunotherapy. Am J Obstet Gynecol. 204:169.e1–e8. 2011. View Article : Google Scholar

156 

Rosales R, López-Contreras M, Rosales C, Magallanes-Molina JR, Gonzalez-Vergara R, Arroyo-Cazarez JM, Ricardez-Arenas A, Del Follo-Valencia A, Padilla-Arriaga S, Guerrero MV, et al: Regression of human papillomavirus intraepithelial lesions is induced by MVA E2 therapeutic vaccine. Hum Gene Ther. 25:1035–1049. 2014. View Article : Google Scholar : PubMed/NCBI

157 

Gomez-Gutierrez JG, Elpek KG, Montes de Oca-Luna R, Shirwan H, Sam Zhou H and McMasters KM: Vaccination with an adenoviral vector expressing calreticulin-human papilloma-virus 16 E7 fusion protein eradicates E7 expressing established tumors in mice. Cancer Immunol Immunother. 56:997–1007. 2007. View Article : Google Scholar

158 

Kast WM, Brandt RM, Sidney J, Drijfhout JW, Kubo RT, Grey HM, Melief CJ and Sette A: Role of HLA-A motifs in identification of potential CTL epitopes in human papillomavirus type 16 E6 and E7 proteins. J Immunol. 152:3904–3912. 1994.PubMed/NCBI

159 

Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, Essahsah F, Fathers LM, Offringa R, Drijfhout JW, et al: Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med. 361:1838–1847. 2009. View Article : Google Scholar : PubMed/NCBI

160 

de Vos van Steenwijk PJ, Ramwadhdoebe TH, Löwik MJ, van der Minne CE, Berends-van der Meer DM, Fathers LM, Valentijn AR, Oostendorp J, Fleuren GJ, Hellebrekers BW, et al: A placebo-controlled randomized HPV16 synthetic long-peptide vaccination study in women with high-grade cervical squamous intraepithelial lesions. Cancer Immunol Immunother. 61:1485–1492. 2012. View Article : Google Scholar : PubMed/NCBI

161 

van Poelgeest MI, Welters MJ, van Esch EM, Stynenbosch LF, Kerpershoek G, van Persijn van Meerten EL, van den Hende M, Löwik MJ, Berends-van der Meer DM, Fathers LM, et al: HPV16 synthetic long peptide (HPV16-SLP) vaccination therapy of patients with advanced or recurrent HPV16-induced gynecological carcinoma, a phase II trial. J Transl Med. 11:882013. View Article : Google Scholar : PubMed/NCBI

162 

de Vos van Steenwijk PJ, van Poelgeest MI, Ramwadhdoebe TH, Löwik MJ, Berends-van der Meer DM, van der Minne CE, Loof NM, Stynenbosch LF, Fathers LM, Valentijn AR, et al: The long-term immune response after HPV16 peptide vaccination in women with low-grade pre-malignant disorders of the uterine cervix: A placebo-controlled phase II study. Cancer Immunol Immunother. 63:147–160. 2014. View Article : Google Scholar

163 

Welters MJ, van der Sluis TC, van Meir H, Loof NM, van Ham VJ, van Duikeren S, Santegoets SJ, Arens R, de Kam ML, Cohen AF, et al: Vaccination during myeloid cell depletion by cancer chemotherapy fosters robust T cell responses. Sci Transl Med. 8:334ra522016. View Article : Google Scholar : PubMed/NCBI

164 

Coleman HN, Greenfield WW, Stratton SL, Vaughn R, Kieber A, Moerman-Herzog AM, Spencer HJ, Hitt WC, Quick CM, Hutchins LF, et al: Human papillomavirus type 16 viral load is decreased following a therapeutic vaccination. Cancer Immunol Immunother. 65:563–573. 2016. View Article : Google Scholar : PubMed/NCBI

165 

Su JH, Wu A, Scotney E, Ma B, Monie A, Hung CF and Wu TC: Immunotherapy for cervical cancer: Research status and clinical potential. BioDrugs. 24:109–129. 2010. View Article : Google Scholar : PubMed/NCBI

166 

de Jong A, O'Neill T, Khan AY, Kwappenberg KM, Chisholm SE, Whittle NR, Dobson JA, Jack LC, St Clair Roberts JA, Offringa R, et al: Enhancement of human papillomavirus (HPV) type 16 E6 and E7-specific T-cell immunity in healthy volunteers through vaccination with TA-CIN, an HPV16 L2E7E6 fusion protein vaccine. Vaccine. 20:3456–3464. 2002. View Article : Google Scholar : PubMed/NCBI

167 

Daayana S, Elkord E, Winters U, Pawlita M, Roden R, Stern PL and Kitchener HC: Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br J Cancer. 102:1129–1136. 2010. View Article : Google Scholar : PubMed/NCBI

168 

Van Damme P, Bouillette-Marussig M, Hens A, De Coster I, Depuydt C, Goubier A, Van Tendeloo V, Cools N, Goossens H, Hercend T, et al: GTL001, A therapeutic vaccine for women infected with human papillomavirus 16 or 18 and normal cervical cytology: Results of a phase I clinical trial. Clin Cancer Res. 22:3238–3248. 2016. View Article : Google Scholar : PubMed/NCBI

169 

Granadillo M, Vallespi MG, Batte A, Mendoza O, Soria Y, Lugo VM and Torrens I: A novel fusion protein-based vaccine comprising a cell penetrating and immunostimulatory peptide linked to human papillomavirus (HPV) type 16 E7 antigen generates potent immunologic and anti-tumor responses in mice. Vaccine. 29:920–930. 2011. View Article : Google Scholar

170 

Vallespi MG, Glaria LA, Reyes O, Garay HE, Ferrero J and Araña MJ: A Limulus antilipopolysaccharide factor-derived peptide exhibits a new immunological activity with potential applicability in infectious diseases. Clin Diagn Lab Immunol. 7:669–675. 2000.PubMed/NCBI

171 

Lin KH, Chang LS, Tian CY, Yeh YC, Chen YJ, Chuang TH, Liu SJ and Leng CH: Carboxyl-terminal fusion of E7 into Flagellin shifts TLR5 activation to NLRC4/NAIP5 activation and induces TLR5-independent anti-tumor immunity. Sci Rep. 6:241992016. View Article : Google Scholar : PubMed/NCBI

172 

Lee SJ, Yang A, Wu TC and Hung CF: Immunotherapy for human papillomavirus-associated disease and cervical cancer: Review of clinical and translational research. J Gynecol Oncol. 27:e512016. View Article : Google Scholar : PubMed/NCBI

173 

Vici P, Pizzuti L, Mariani L, Zampa G, Santini D, Di Lauro L, Gamucci T, Natoli C, Marchetti P, Barba M, et al: Targeting immune response with therapeutic vaccines in premalignant lesions and cervical cancer: Hope or reality from clinical studies. Expert Rev Vaccines. 15:1327–1336. 2016. View Article : Google Scholar : PubMed/NCBI

174 

Yang A, Farmer E, Wu TC and Hung CF: Perspectives for therapeutic HPV vaccine development. J Biomed Sci. 23:752016. View Article : Google Scholar : PubMed/NCBI

175 

Trimble C, Lin CT, Hung CF, Pai S, Juang J, He L, Gillison M, Pardoll D, Wu L and Wu TC: Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine. 21:4036–4042. 2003. View Article : Google Scholar : PubMed/NCBI

176 

Best SR, Peng S, Juang CM, Hung CF, Hannaman D, Saunders JR, Wu TC and Pai SI: Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery. Vaccine. 27:5450–5459. 2009. View Article : Google Scholar : PubMed/NCBI

177 

Tsen SW, Wu CY, Meneshian A, Pai SI, Hung CF and Wu TC: Femtosecond laser treatment enhances DNA transfection efficiency in vivo. J Biomed Sci. 16:362009. View Article : Google Scholar : PubMed/NCBI

178 

Klencke B, Matijevic M, Urban RG, Lathey JL, Hedley ML, Berry M, Thatcher J, Weinberg V, Wilson J, Darragh T, et al: Encapsulated plasmid DNA treatment for human papilloma-virus 16-associated anal dysplasia: A Phase I study of ZYC101. Clin Cancer Res. 8:1028–1037. 2002.PubMed/NCBI

179 

Hung CF, Hsu KF, Cheng WF, Chai CY, He L, Ling M and Wu TC: Enhancement of DNA vaccine potency by linkage of antigen gene to a gene encoding the extracellular domain of Fms-like tyrosine kinase 3-ligand. Cancer Res. 61:1080–1088. 2001.PubMed/NCBI

180 

Hauser H and Chen SY: Augmentation of DNA vaccine potency through secretory heat shock protein-mediated antigen targeting. Methods. 31:225–231. 2003. View Article : Google Scholar : PubMed/NCBI

181 

Cheung YK, Cheng SC, Sin FW and Xie Y: Plasmid encoding papillomavirus Type 16 (HPV16) DNA constructed with codon optimization improved the immunogenicity against HPV infection. Vaccine. 23:629–638. 2004. View Article : Google Scholar : PubMed/NCBI

182 

Liu W, Gao F, Zhao KN, Zhao W, Fernando GJ, Thomas R and Frazer IH: Codon modified human papillomavirus type 16 E7 DNA vaccine enhances cytotoxic T-lymphocyte induction and anti-tumour activity. Virology. 301:43–52. 2002. View Article : Google Scholar : PubMed/NCBI

183 

Lin CT, Tsai YC, He L, Calizo R, Chou HH, Chang TC, Soong YK, Hung CF and Lai CH: A DNA vaccine encoding a codon-optimized human papillomavirus type 16 E6 gene enhances CTL response and anti-tumor activity. J Biomed Sci. 13:481–488. 2006. View Article : Google Scholar : PubMed/NCBI

184 

Smahel M, Poláková I, Pokorná D, Ludvíková V, Dusková M and Vlasák J: Enhancement of T cell-mediated and humoral immunity of beta-glucuronidase-based DNA vaccines against HPV16 E7 oncoprotein. Int J Oncol. 33:93–101. 2008.PubMed/NCBI

185 

Massa S, Simeone P, Muller A, Benvenuto E, Venuti A and Franconi R: Antitumor activity of DNA vaccines based on the human papillomavirus-16 E7 protein genetically fused to a plant virus coat protein. Hum Gene Ther. 19:354–364. 2008. View Article : Google Scholar : PubMed/NCBI

186 

Chen CH, Wang TL, Hung CF, Yang Y, Young RA, Pardoll DM and Wu TC: Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res. 60:1035–1042. 2000.PubMed/NCBI

187 

Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M and Wu TC: Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest. 108:669–678. 2001. View Article : Google Scholar : PubMed/NCBI

188 

Bolhassani A, Zahedifard F, Taghikhani M and Rafati S: Enhanced immunogenicity of HPV16E7 accompanied by Gp96 as an adjuvant in two vaccination strategies. Vaccine. 26:3362–3370. 2008. View Article : Google Scholar : PubMed/NCBI

189 

Hung CF, Cheng WF, Hsu KF, Chai CY, He L, Ling M and Wu TC: Cancer immunotherapy using a DNA vaccine encoding the translocation domain of a bacterial toxin linked to a tumor antigen. Cancer Res. 61:3698–3703. 2001.PubMed/NCBI

190 

Hung CF, Cheng WF, He L, Ling M, Juang J, Lin CT and Wu TC: Enhancing major histocompatibility complex class I antigen presentation by targeting antigen to centrosomes. Cancer Res. 63:2393–2398. 2003.PubMed/NCBI

191 

Huang CH, Peng S, He L, Tsai YC, Boyd DA, Hansen TH, Wu TC and Hung CF: Cancer immunotherapy using a DNA vaccine encoding a single-chain trimer of MHC class I linked to an HPV-16 E6 immunodominant CTL epitope. Gene Ther. 12:1180–1186. 2005. View Article : Google Scholar : PubMed/NCBI

192 

Kim TW, Hung CF, Boyd D, Juang J, He L, Kim JW, Hardwick JM and Wu TC: Enhancing DNA vaccine potency by combining a strategy to prolong dendritic cell life with intracellular targeting strategies. J Immunol. 171:2970–2976. 2003. View Article : Google Scholar : PubMed/NCBI

193 

Kim TW, Lee JH, He L, Boyd DA, Hardwick JM, Hung CF and Wu TC: Modification of professional antigen-presenting cells with small interfering RNA in vivo to enhance cancer vaccine potency. Cancer Res. 65:309–316. 2005.PubMed/NCBI

194 

Huang B, Mao CP, Peng S, Hung CF and Wu TC: RNA interference-mediated in vivo silencing of fas ligand as a strategy for the enhancement of DNA vaccine potency. Hum Gene Ther. 19:763–773. 2008. View Article : Google Scholar : PubMed/NCBI

195 

Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, Edwards L, Parker RL, Denny L, Giffear M, et al: Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: A randomised, double-blind, placebo-controlled phase 2b trial. Lancet. 386:2078–2088. 2015. View Article : Google Scholar : PubMed/NCBI

196 

Kim TJ, Jin HT, Hur SY, Yang HG, Seo YB, Hong SR, Lee CW, Kim S, Woo JW, Park KS, et al: Clearance of persistent HPV infection and cervical lesion by therapeutic DNA vaccine in CIN3 patients. Nat Commun. 5:53172014. View Article : Google Scholar : PubMed/NCBI

197 

Maldonado L, Teague JE, Morrow MP, Jotova I, Wu TC, Wang C, Desmarais C, Boyer JD, Tycko B, Robins HS, et al: Intramuscular therapeutic vaccination targeting HPV16 induces T cell responses that localize in mucosal lesions. Sci Transl Med. 6:221ra132014. View Article : Google Scholar : PubMed/NCBI

198 

Alvarez RD, Huh WK, Bae S, Lamb LS Jr, Conner MG, Boyer J, Wang C, Hung CF, Sauter E, Paradis M, et al: A pilot study of pNGVL4a-CRT/E7(detox) for the treatment of patients with HPV16+ cervical intraepithelial neoplasia 2/3 (CIN2/3). Gynecol Oncol. 140:245–252. 2016. View Article : Google Scholar :

199 

Kim TW, Hung CF, Juang J, He L, Hardwick JM and Wu TC: Enhancement of suicidal DNA vaccine potency by delaying suicidal DNA-induced cell death. Gene Ther. 11:336–342. 2004. View Article : Google Scholar : PubMed/NCBI

200 

Varnavski AN, Young PR and Khromykh AA: Stable high-level expression of heterologous genes in vitro and in vivo by noncy-topathic DNA-based Kunjin virus replicon vectors. J Virol. 74:4394–4403. 2000. View Article : Google Scholar

201 

Herd KA, Harvey T, Khromykh AA and Tindle RW: Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity against human papillomavirus 16 E7-expressing tumour. Virology. 319:237–248. 2004. View Article : Google Scholar : PubMed/NCBI

202 

Tillman BW, Hayes TL, DeGruijl TD, Douglas JT and Curiel DT: Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model. Cancer Res. 60:5456–5463. 2000.PubMed/NCBI

203 

Mackova J, Kutinova L, Hainz P, Krystofova J, Sroller V, Otahal P, Gabriel P and Nemeckova S: Adjuvant effect of dendritic cells transduced with recombinant vaccinia virus expressing HPV16-E7 is inhibited by co-expression of IL12. Int J Oncol. 24:1581–1588. 2004.PubMed/NCBI

204 

Wang TL, Ling M, Shih IM, Pham T, Pai SI, Lu Z, Kurman RJ, Pardoll DM and Wu TC: Intramuscular administration of E7-transfected dendritic cells generates the most potent E7-specific anti-tumor immunity. Gene Ther. 7:726–733. 2000. View Article : Google Scholar : PubMed/NCBI

205 

Benencia F, Courreges MC and Coukos G: Whole tumor antigen vaccination using dendritic cells: Comparison of RNA electroporation and pulsing with UV-irradiated tumor cells. J Transl Med. 6:212008. View Article : Google Scholar : PubMed/NCBI

206 

Murakami M, Gurski KJ, Marincola FM, Ackland J and Steller MA: Induction of specific CD8+ T-lymphocyte responses using a human papillomavirus-16 E6/E7 fusion protein and autologous dendritic cells. Cancer Res. 59:1184–1187. 1999.PubMed/NCBI

207 

Peng S, Kim TW, Lee JH, Yang M, He L, Hung CF and Wu TC: Vaccination with dendritic cells transfected with BAK and BAX siRNA enhances antigen-specific immune responses by prolonging dendritic cell life. Hum Gene Ther. 16:584–593. 2005. View Article : Google Scholar : PubMed/NCBI

208 

Kim JH, Kang TH, Noh KH, Bae HC, Kim SH, Yoo YD, Seong SY and Kim TW: Enhancement of dendritic cell-based vaccine potency by anti-apoptotic siRNAs targeting key pro-apoptotic proteins in cytotoxic CD8(+) T cell-mediated cell death. Immunol Lett. 122:58–67. 2009. View Article : Google Scholar : PubMed/NCBI

209 

Adams M, Navabi H, Jasani B, Man S, Fiander A, Evans AS, Donninger C and Mason M: Dendritic cell (DC) based therapy for cervical cancer: Use of DC pulsed with tumour lysate and matured with a novel synthetic clinically non-toxic double stranded RNA analogue poly (I):poly (C(12)U) (Ampligen R). Vaccine. 21:787–790. 2003. View Article : Google Scholar : PubMed/NCBI

210 

Ahn YH, Hong SO, Kim JH, Noh KH, Song KH, Lee YH, Jeon JH, Kim DW, Seo JH and Kim TW: The siRNA cocktail targeting interleukin 10 receptor and transforming growth factor-β receptor on dendritic cells potentiates tumour antigen-specific CD8(+) T cell immunity. Clin Exp Immunol. 181:164–178. 2015. View Article : Google Scholar : PubMed/NCBI

211 

Santin AD, Bellone S, Palmieri M, Ravaggi A, Romani C, Tassi R, Roman JJ, Burnett A, Pecorelli S and Cannon MJ: HPV16/18 E7-pulsed dendritic cell vaccination in cervical cancer patients with recurrent disease refractory to standard treatment modalities. Gynecol Oncol. 100:469–478. 2006. View Article : Google Scholar

212 

Santin AD, Bellone S, Palmieri M, Zanolini A, Ravaggi A, Siegel ER, Roman JJ, Pecorelli S and Cannon MJ: Human papillomavirus type 16 and 18 E7-pulsed dendritic cell vaccination of stage IB or IIA cervical cancer patients: A phase I escalating-dose trial. J Virol. 82:1968–1979. 2008. View Article : Google Scholar :

213 

Bubenik J, Símová J, Hájková R, Sobota V, Jandlová T, Smahel M, Sobotková E and Vonka V: Interleukin 2 gene therapy of residual disease in mice carrying tumours induced by HPV 16. Int J Oncol. 14:593–597. 1999.PubMed/NCBI

214 

Mikyskova R, Indrová M, Símová J, Jandlová T, Bieblová J, Jinoch P, Bubeník J and Vonka V: Treatment of minimal residual disease after surgery or chemotherapy in mice carrying HPV16-associated tumours: Cytokine and gene therapy with IL-2 and GM-CSF. Int J Oncol. 24:161–167. 2004.

215 

Hallez S, Detremmerie O, Giannouli C, Thielemans K, Gajewski TF, Burny A and Leo O: Interleukin-12-secreting human papillomavirus type 16-transformed cells provide a potent cancer vaccine that generates E7-directed immunity. Int J Cancer. 81:428–437. 1999. View Article : Google Scholar : PubMed/NCBI

216 

Chang EY, Chen CH, Ji H, Wang TL, Hung K, Lee BP, Huang AY, Kurman RJ, Pardoll DM and Wu T: Antigen-specific cancer immunotherapy using a GM-CSF secreting allogeneic tumor cell-based vaccine. Int J Cancer. 86:725–730. 2000. View Article : Google Scholar : PubMed/NCBI

217 

Thompson PL and Dessureault S: Tumor cell vaccines. Adv Exp Med Biol. 601:345–355. 2007. View Article : Google Scholar : PubMed/NCBI

218 

Stevanović S, Draper LM, Langhan MM, Campbell TE, Kwong ML, Wunderlich JR, Dudley ME, Yang JC, Sherry RM, Kammula US, et al: Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J Clin Oncol. 33:1543–1550. 2015. View Article : Google Scholar

219 

Draper LM, Kwong ML, Gros A, Stevanović S, Tran E, Kerkar S, Raffeld M, Rosenberg SA and Hinrichs CS: Targeting of HPV-16+ epithelial cancer cells by TCR gene engineered T cells directed against E6. Clin Cancer Res. 21:4431–4439. 2015. View Article : Google Scholar : PubMed/NCBI

220 

Beutner KR, Geisse JK, Helman D, Fox TL, Ginkel A and Owens ML: Therapeutic response of basal cell carcinoma to the immune response modifier imiquimod 5% cream. J Am Acad Dermatol. 41:1002–1007. 1999. View Article : Google Scholar : PubMed/NCBI

221 

Buck HW and Guth KJ: Treatment of vaginal intraepithelial neoplasia (primarily low grade) with imiquimod 5% cream. J Low Genit Tract Dis. 7:290–293. 2003. View Article : Google Scholar

222 

Terlou A, van Seters M, Ewing PC, Aaronson NK, Gundy CM, Heijmans-Antonissen C, Quint WG, Blok LJ, van Beurden M and Helmerhorst TJ: Treatment of vulvar intraepithelial neoplasia with topical imiquimod: Seven years median follow-up of a randomized clinical trial. Gynecol Oncol. 121:157–162. 2011. View Article : Google Scholar : PubMed/NCBI

223 

Fox PA, Nathan M, Francis N, Singh N, Weir J, Dixon G, Barton SE and Bower M: A double-blind, randomized controlled trial of the use of imiquimod cream for the treatment of anal canal high-grade anal intraepithelial neoplasia in HIV-positive MSM on HAART, with long-term follow-up data including the use of open-label imiquimod. Aids. 24:2331–2335. 2010.PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 55 Issue 3

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, Y., Li, H., Pi, R., Yang, Y., Zhao, X., & Qi, X. (2019). Current strategies against persistent human papillomavirus infection (Review). International Journal of Oncology, 55, 570-584. https://doi.org/10.3892/ijo.2019.4847
MLA
Liu, Y., Li, H., Pi, R., Yang, Y., Zhao, X., Qi, X."Current strategies against persistent human papillomavirus infection (Review)". International Journal of Oncology 55.3 (2019): 570-584.
Chicago
Liu, Y., Li, H., Pi, R., Yang, Y., Zhao, X., Qi, X."Current strategies against persistent human papillomavirus infection (Review)". International Journal of Oncology 55, no. 3 (2019): 570-584. https://doi.org/10.3892/ijo.2019.4847