Regulation of GKN1 expression in gastric carcinogenesis: A problem to resolve (Review)

  • Authors:
    • Judit Alarcón‑Millán
    • Dinorah Nashely Martínez‑Carrillo
    • Oscar Peralta‑Zaragoza
    • Gloria Fernández‑Tilapa
  • View Affiliations

  • Published online on: July 16, 2019     https://doi.org/10.3892/ijo.2019.4843
  • Pages: 555-569
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Gastrokine 1 (GKN1) is a protein expressed on the surface mucosa cells of the gastric antrum and fundus, which contributes to maintaining gastric homeostasis, inhibits inflammation and is a tumor suppressor. The expression of GKN1 decreases in mucosa that are either inflamed or infected by Helicobacter pylori, and is absent in gastric cancer. The measurement of circulating GKN1 concentration, the protein itself, or the mRNA in gastric tissue may be of use for the early diagnosis of cancer. The mechanisms that modulate the deregulation or silencing of GKN1 expression have not been completely described. The modification of histones, methylation of the GKN1 promoter, or proteasomal degradation of the protein have been detected in some patients; however, these mechanisms do not completely explain the absence of GKN1 or the reduction in GKN1 levels. Only NKX6.3 transcription factor has been shown to be a positive modulator of GKN1 transcription, although others also have an affinity with sequences in the promoter of this gene. While microRNAs (miRNAs) are able to directly or indirectly regulate the expression of genes at the post‑transcriptional level, the involvement of miRNAs in the regulation of GKN1 has not been reported. The present review analyzes the information reported on the determination of GKN1 expression and the regulation of its expression at the transcriptional, post‑transcriptional and post‑translational levels; it proposes an integrated model that incorporates the regulation of GKN1 expression via transcription factors and miRNAs in H. pylori infection.

References

1 

Khurana S and Mills JC: The gastric mucosa development and differentiation. Prog Mol Biol Transl Sci. 96:93–115. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Dimaline R and Varro A: Attack and defence in the gastric epithelium - a delicate balance. Exp Physiol. 92:591–601. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Hoffmann W: Self-renewal of the gastric ephitelium from stem and progenitor cells. Front Biosci. S5:720–731. 2013. View Article : Google Scholar

4 

Mueller A, Merrell DS, Grimm J and Falkow S: Profiling of microdissected gastric epithelial cells reveals a cell type-specific response to Helicobacter pylori infection. Gastroenterology. 127:1446–1462. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Silen W and Ito S: Mechanisms for rapid re-epithelialization of the gastric mucosal surface. Annu Rev Physiol. 47:217–229. 1985. View Article : Google Scholar : PubMed/NCBI

6 

Menheniott TR, Kurklu B and Giraud AS: Gastrokines: Stomach-specific proteins with putative homeostatic and tumor suppressor roles. Am J Physiol Gastrointest Liver Physiol. 304:G109–G121. 2013. View Article : Google Scholar

7 

Rippa E, La Monica G, Allocca R, Romano MF, De Palma M and Arcari P: Overexpression of gastrokine 1 in gastric cancer cells induces Fas-mediated apoptosis. J Cell Physiol. 226:2571–2578. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Yoon JH, Choi YJ, Choi WS, Ashktorab H, Smoot DT, Nam SW, Lee JY and Park WS: GKN1-miR-185-DNMT1 axis suppresses gastric carcinogenesis through regulation of epigenetic alteration and cell cycle. Clin Cancer Res. 19:4599–4610. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Yoon JH, Cho ML, Choi YJ, Back JY, Park MK, Lee SW, Choi BJ, Ashktorab H, Smoot DT, Nam SW, et al: Gastrokine 1 regulates NF-κB signaling pathway and cytokine expression in gastric cancers. J Cell Biochem. 114:1800–1809. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Kim O, Yoon JH, Choi WS, Ashktorab H, Smoot DT, Nam SW, Lee JY and Park WS: GKN2 contributes to the homeostasis of gastric mucosa by inhibiting GKN1 activity. J Cell Physiol. 229:762–771. 2014. View Article : Google Scholar

11 

Yoon JH, Seo HS, Choi WS, Kim O, Nam SW, Lee JY and Park WS: Gastrokine 1 induces senescence and apoptosis through regulating telomere length in gastric cancer. Oncotarget. 5:11695–11708. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Chen P, Li YC and Toback FG: AMP-18 targets p21 to maintain epithelial homeostasis. PLoS One. 10:e01254902015. View Article : Google Scholar : PubMed/NCBI

13 

Kim O, Yoon JH, Choi WS, Ashktorab H, Smoot DT, Nam SW, Lee JY and Park WS: Gastrokine 1 inhibits gastrin-induced cell proliferation. Gastric Cancer. 19:381–391. 2016. View Article : Google Scholar

14 

Rippa E, Altieri F, Di Stadio CS, Miselli G, Lamberti A, Federico A, Quagliariello V, Papale F, Guerra G and Arcari P: Ectopic expression of gastrokine 1 in gastric cancer cells up-regulates tight and adherens junction proteins network. Pathol Res Pract. 211:577–583. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Xing R, Cui JT, Xia N and Lu YY: GKN1 inhibits cell invasion in gastric cancer by inactivating the NF-kappaB pathway. Discov Med. 19:65–71. 2015.PubMed/NCBI

16 

Yoon JH, Choi WS, Kim O, Choi BJ, Nam SW, Lee JY and Park WS: Gastrokine 1 inhibits gastric cancer cell migration and invasion by downregulating RhoA expression. Gastric Cancer. 20:274–285. 2017. View Article : Google Scholar

17 

Nardone G, Martin G, Rocco A, Rippa E, La Monica G, Caruso F and Arcari P: Molecular expression of Gastrokine 1 in normal mucosa and in Helicobacter pylori-related preneoplastic and neoplastic gastric lesions. Cancer Biol Ther. 7:1890–1895. 2008. View Article : Google Scholar : PubMed/NCBI

18 

He QY, Cheung YH, Leung SY, Yuen ST, Chu KM and Chiu JF: Diverse proteomic alterations in gastric adenocarcinoma. Proteomics. 4:3276–3287. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Moss SF, Lee JW, Sabo E, Rubin AK, Rommel J, Westley BR, May FE, Gao J, Meitner PA, Tavares R, et al: Decreased expression of gastrokine 1 and the trefoil factor interacting protein TFIZ1/GKN2 in gastric cancer: Influence of tumor histology and relationship to prognosis. Clin Cancer Res. 14:4161–4167. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Yoon JH, Song JH, Zhang C, Jin M, Kang YH, Nam SW, Lee JY and Park WS: Inactivation of the Gastrokine 1 gene in gastric adenomas and carcinomas. J Pathol. 223:618–625. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Mao W, Chen J, Peng TL, Yin XF, Chen LZ and Chen MH: Downregulation of gastrokine-1 in gastric cancer tissues and restoration of its expression induced gastric cancer cells to apoptosis. J Exp Clin Cancer Res. 31:49–58. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Xiao JW, Chen JH, Ren MY, Tian XB and Wang CS: Relationship between expression of gastrokine 1 and clinicopathological characteristics in gastric cancer patients. Asian Pac J Cancer Prev. 13:5897–5901. 2012. View Article : Google Scholar

23 

Choi WS, Seo HS, Song KY, Yoon JH, Kim O, Nam SW, Lee JY and Park WS: Gastrokine 1 expression in the human gastric mucosa is closely associated with the degree of gastritis and DNA methylation. J Gastric Cancer. 13:232–241. 2013. View Article : Google Scholar

24 

Guo XY, Dong L, Qin B, Jiang J and Shi AM: Decreased expression of gastrokine 1 in gastric mucosa of gastric cancer patients. World J Gastroenterol. 20:16702–16706. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Hasan AA, Igci M, Borazan E, Khailany RA, Bayraktar E and Arslan A: Down-regulated gene expression of GKN1 and GKN2 as diagnostic markers for gastric cancer. WASET9. 532–535. 2015.

26 

Altieri F, Di Stadio CS, Federico A, Miselli G, De Palma M, Rippa E and Arcari P: Epigenetic alterations of gastrokine 1 gene expression in gastric cancer. Oncotarget. 8:16899–16911. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Yang M, Jiang N, Cao QW, Ma MQ and Sun Q: The E3 ligase UBR5 regulates gastric cancer cell growth by destabilizing the tumor suppressor GKN1. Biochem Biophys Res Commun. 478:1624–1629. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Lu F, Wikramasinghe P, Norseen J, Tsai K, Wang P, Showe L, Davuluri RV and Lieberman PM: Genome-wide analysis of host-chromosome binding sites for Epstein-Barr virus nuclear antigen 1 (EBNA1). Virol J. 7:2622010. View Article : Google Scholar : PubMed/NCBI

29 

Lu F, Tempera I, Lee HT, Dewispelaere K and Lieberman PM: EBNA1 binding and epigenetic regulation of gastrokine tumor suppressor genes in gastric carcinoma cells. Virol J. 11:122014. View Article : Google Scholar : PubMed/NCBI

30 

Nardone G, Rippa E, Martin G, Rocco A, Siciliano RA, Fiengo A, Cacace G, Malorni A, Budillon G and Arcari P: Gastrokine 1 expression in patients with and without Helicobacter pylori infection. Dig Liver Dis. 39:122–129. 2007. View Article : Google Scholar

31 

Matsushima K, Isomoto H, Inoue N, Nakayama T, Hayashi T, Nakayama M, Nakao K, Hirayama T and Kohno S: MicroRNA signatures in Helicobacter pylori-infected gastric mucosa. Int J Cancer. 128:361–370. 2011. View Article : Google Scholar

32 

Lario S, Ramírez-Lázaro MJ, Aransay AM, Lozano JJ, Montserrat A, Casalots Á, Junquera F, Álvarez J, Segura F, Campo R, et al: microRNA profiling in duodenal ulcer disease caused by Helicobacter pylori infection in a Western population. Clin Microbiol Infect. 18:E273–E282. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Chang H, Kim N, Park JH, Nam RH, Choi YJ, Lee HS, Yoon H, Shin CM, Park YS, Kim JM, et al: Different microRNA expression levels in gastric cancer depending on Helicobacter pylori infection. Gut Liver. 9:188–196. 2015. View Article : Google Scholar :

34 

Zhu Y, Jiang Q, Lou X, Ji X, Wen Z, Wu J, Tao H, Jiang T, He W, Wang C, et al: MicroRNAs up-regulated by CagA of Helicobacter pylori induce intestinal metaplasia of gastric epithelial cells. PLoS One. 7:e351472012. View Article : Google Scholar : PubMed/NCBI

35 

Santos JC, Brianti MT, Almeida VR, Ortega MM, Fischer W, Haas R, Matheu A and Ribeiro ML: Helicobacter pylori infection modulates the expression of miRNAs associated with DNA mismatch repair pathway. Mol Carcinog. 56:1372–1379. 2017. View Article : Google Scholar

36 

Chung JW, Jeong SH, Lee SM, Pak JH, Lee GH, Jeong JY and Kim JH: Expression of microRNA in host cells infected with Helicobacter pylori. Gut Liver. 11:392–400. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Sugihara H, Ishimoto T, Watanabe M, Sawayama H, Iwatsuki M, Baba Y, Komohara Y, Takeya M and Baba H: Identification of miR-30e* regulation of Bmi1 expression mediated by tumor-associated macrophages in gastrointestinal cancer. PLoS One. 8:e818392013. View Article : Google Scholar

38 

Stumpfova Z, Hezova R, Meli AC, Slaby O and Michalek J: MicroRNA profiling of activated and tolerogenic human dendritic cells. Mediators Inflamm. 2014:259689–259699. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Teteloshvili N, Smigielska-Czepiel K, Kroesen BJ, Brouwer E, Kluiver J, Boots AM and van den Berg A: T-cell activation induces dynamic changes in miRNA expression patterns in CD4 and CD8 T-cell subsets. MicroRNA. 4:117–122. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Sánchez-Pulido L, Devos D and Valencia A: BRICHOS: A conserved domain in proteins associated with dementia, respiratory distress and cancer. Trends Biochem Sci. 27:329–332. 2002. View Article : Google Scholar : PubMed/NCBI

41 

Hedlund J, Johansson J and Persson B: BRICHOS - a super-family of multidomain proteins with diverse functions. BMC Res Notes. 2:180–189. 2009. View Article : Google Scholar

42 

Pavone LM, Del Vecchio P, Mallardo P, Altieri F, De Pasquale V, Rea S, Martucci NM, Di Stadio CS, Pucci P, Flagiello A, et al: Structural characterization and biological properties of human gastrokine 1. Mol Biosyst. 9:412–421. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Yoon JH, Choi YJ, Choi WS, Nam SW, Lee JY and Park WS: Functional analysis of the NH2-terminal hydrophobic region and BRICHOS domain of GKN1. Biochem Biophys Res Commun. 440:689–695. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Dokhaee F, Mazhari S, Galehdari M, Bahadori Monfared A and Baghaei K: Evaluation of GKN1 and GKN2 gene expression as a biomarker of gastric cancer. Gastroenterol Hepatol Bed Bench. 11(Suppl 1): S140–S145. 2018.

45 

Toback FG, Walsh-Reitz MM, Musch MW, Chang EB, Del Valle J, Ren H, Huang E and Martin TE: Peptide fragments of AMP-18, a novel secreted gastric antrum mucosal protein, are mitogenic and motogenic. Am J Physiol Gastrointest Liver Physiol. 285:G344–G353. 2003. View Article : Google Scholar : PubMed/NCBI

46 

Xing R, Li W, Cui J, Zhang J, Kang B, Wang Y, Wang Z, Liu S and Lu Y: Gastrokine 1 induces senescence through p16/Rb pathway activation in gastric cancer cells. Gut. 61:43–52. 2012. View Article : Google Scholar

47 

Conteduca V, Sansonno D, Lauletta G, Russi S, Ingravallo G and Dammacco F: H. pylori infection and gastric cancer: State of the art (review). Int J Oncol. 42:5–18. 2013. View Article : Google Scholar

48 

Yoon JH, Seo HS, Choi SS, Chae HS, Choi WS, Kim O, Ashktorab H, Smoot DT, Nam SW, Lee JY, et al: Gastrokine 1 inhibits the carcinogenic potentials of Helicobacter pylori CagA. Carcinogenesis. 35:2619–2629. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Yoshikawa Y, Mukai H, Hino F, Asada K and Kato I: Isolation of two novel genes, down-regulated in gastric cancer. Jpn J Cancer Res. 91:459–463. 2000. View Article : Google Scholar : PubMed/NCBI

50 

Shiozaki K, Nakamori S, Tsujie M, Okami J, Yamamoto H, Nagano H, Dono K, Umeshita K, Sakon M, Furukawa H, et al: Human stomach-specific gene, CA11, is down-regulated in gastric cancer. Int J Oncol. 19:701–707. 2001.PubMed/NCBI

51 

Oien KA, Vass JK, Downie I, Fullarton G and Keith WN: Profiling, comparison and validation of gene expression in gastric carcinoma and normal stomach. Oncogene. 22:4287–4300. 2003. View Article : Google Scholar : PubMed/NCBI

52 

Oien KA, McGregor F, Butler S, Ferrier RK, Downie I, Bryce S, Burns S and Keith WN: Gastrokine 1 is abundantly and specifically expressed in superficial gastric epithelium, down-regulated in gastric carcinoma, and shows high evolutionary conservation. J Pathol. 203:789–797. 2004. View Article : Google Scholar : PubMed/NCBI

53 

Koper-Lenkiewicz OM, Kamińska J, Gawrońska B and Matowicka-Karna J: The role and diagnostic potential of gastrokine 1 in gastric cancer. Cancer Manag Res. 11:1921–1931. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Zamanian-Azodi M, Rezaei-Tavirani M, Hasanzadeh H, Rahmati Rad S and Dalilan S: Introducing biomarker panel in esophageal, gastric, and colon cancers; a proteomic approach. Gastroenterol Hepatol Bed Bench. 8:6–18. 2015.PubMed/NCBI

55 

Villano V, Di Stadio CS, Federico A, Altieri F, Miselli G, De Palma M, Rippa E and Arcari P: Gastrokine 1 mRNA in human sera is not informative biomarker for gastric cancer. J Negat Results Biomed. 15:142016. View Article : Google Scholar : PubMed/NCBI

56 

Yoon JH, Ham IH, Kim O, Ashktorab H, Smoot DT, Nam SW, Lee JY, Hur H and Park WS: Gastrokine 1 protein is a potential theragnostic target for gastric cancer. Gastric Cancer. 21:956–967. 2018. View Article : Google Scholar : PubMed/NCBI

57 

Noguchi T, Wirtz HC, Michaelis S, Gabbert HE and Mueller W: Chromosomal imbalances in gastric cancer. Correlation with histologic subtypes and tumor progression. Am J Clin Pathol. 115:828–834. 2001. View Article : Google Scholar : PubMed/NCBI

58 

Panani AD: Cytogenetic and molecular aspects of gastric cancer: Clinical implications. Cancer Lett. 266:99–115. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Orphanides G and Reinberg D: A unified theory of gene expression. Cell. 108:439–451. 2002. View Article : Google Scholar : PubMed/NCBI

60 

Jaenisch R and Bird A: Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat Genet. 33(Suppl): 245–254. 2003. View Article : Google Scholar : PubMed/NCBI

61 

Shilatifard A: Chromatin modifications by methylation and ubiquitination: Implications in the regulation of gene expression. Annu Rev Biochem. 75:243–269. 2006. View Article : Google Scholar : PubMed/NCBI

62 

Catalanotto C, Cogoni C and Zardo G: MicroRNA in control of gene expression: An overview of nuclear functions. Int J Mol Sci. 17:17122016. View Article : Google Scholar :

63 

Levine M and Tjian R: Transcription regulation and animal diversity. Nature. 424:147–151. 2003. View Article : Google Scholar : PubMed/NCBI

64 

Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR and Weirauch MT: The human transcription factors. Cell. 175:598–599. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Yoon JH, Choi WS, Kim O, Choi SS, Lee EK, Nam SW, Lee JY and Park WS: NKX6.3 controls gastric differentiation and tumorigenesis. Oncotarget. 6:28425–28439. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M and Werner T: MatInspector and beyond: Promoter analysis based on transcription factor binding sites. Bioinformatics. 21:2933–2942. 2005. View Article : Google Scholar : PubMed/NCBI

67 

Grabe N: AliBaba2: Context specific identification of transcription factor binding sites. In Silico Biol. 2:S1–S15. 2002.PubMed/NCBI

68 

Ghosh D: Object-oriented transcription factors database (ooTFD). Nucleic Acids Res. 28:308–310. 2000. View Article : Google Scholar

69 

Strowski MZ, Cramer T, Schäfer G, Jüttner S, Walduck A, Schipani E, Kemmner W, Wessler S, Wunder C, Weber M, et al: Helicobacter pylori stimulates host vascular endothelial growth factor-A (vegf-A) gene expression via MEK/ERK-dependent activation of Sp1 and Sp3. FASEB J. 18:218–220. 2004. View Article : Google Scholar

70 

Mitsuno Y, Yoshida H, Maeda S, Ogura K, Hirata Y, Kawabe T, Shiratori Y and Omata M: Helicobacter pylori induced transactivation of SRE and AP-1 through the ERK signalling pathway in gastric cancer cells. Gut. 49:18–22. 2001. View Article : Google Scholar : PubMed/NCBI

71 

Han JC, Zhang KL, Chen XY, Jiang HF, Kong QY, Sun Y, Wu ML, Huang L, Li H and Liu J: Expression of seven gastric cancer-associated genes and its relevance for Wnt, NF-kappaB and Stat3 signaling. APMIS. 115:1331–1343. 2007. View Article : Google Scholar

72 

Xiong H, Du W, Sun TT, Lin YW, Wang JL, Hong J and Fang JY: A positive feedback loop between STAT3 and cyclooxygenase-2 gene may contribute to Helicobacter pylori-associated human gastric tumorigenesis. Int J Cancer. 134:2030–2040. 2014. View Article : Google Scholar

73 

Hu TZ, Huang LH, Xu CX, Liu XM, Wang Y, Xiao J, Zhou L, Luo L and Jiang XX: Expressional profiles of transcription factors in the progression of Helicobacter pylori-associated gastric carcinoma based on protein/DNA array analysis. Med Oncol. 32:2652015. View Article : Google Scholar : PubMed/NCBI

74 

Liu X, Cao K, Xu C, Hu T, Zhou L, Cao D, Xiao J, Luo L, Guo Y and Qi Y: GATA-3 augmentation down-regulates Connexin43 in Helicobacter pylori associated gastric carcinogenesis. Cancer Biol Ther. 16:987–996. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Qian J, Kong X, Deng N, Tan P, Chen H, Wang J, Li Z, Hu Y, Zou W, Xu J, et al: OCT1 is a determinant of synbindin-related ERK signalling with independent prognostic significance in gastric cancer. Gut. 64:37–48. 2015. View Article : Google Scholar :

76 

Xu G, Li K, Zhang N, Zhu B and Feng G: Screening driving transcription factors in the processing of gastric cancer. Gastroenterol Res Pract. 2016:84314802016. View Article : Google Scholar : PubMed/NCBI

77 

Shakya A, Cooksey R, Cox JE, Wang V, McClain DA and Tantin D: Oct1 loss of function induces a coordinate metabolic shift that opposes tumorigenicity. Nat Cell Biol. 11:320–327. 2009. View Article : Google Scholar : PubMed/NCBI

78 

Kong Y, Ma LQ, Bai PS, Da R, Sun H, Qi XG, Ma JQ, Zhao RM, Chen NZ and Nan KJ: Helicobacter pylori promotes invasion and metastasis of gastric cancer cells through activation of AP-1 and up-regulation of CACUL1. Int J Biochem Cell Biol. 45:2666–2678. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Regalo G, Resende C, Wen X, Gomes B, Durães C, Seruca R, Carneiro F and Machado JC: C/EBP α expression is associated with homeostasis of the gastric epithelium and with gastric carcinogenesis. Lab Invest. 90:1132–1139. 2010. View Article : Google Scholar : PubMed/NCBI

80 

Jackson CB, Judd LM, Menheniott TR, Kronborg I, Dow C, Yeomans ND, Boussioutas A, Robb L and Giraud AS: Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression. J Pathol. 213:140–151. 2007. View Article : Google Scholar : PubMed/NCBI

81 

O'Reilly LA, Putoczki TL, Mielke LA, Low JT, Lin A, Preaudet A, Herold MJ, Yaprianto K, Tai L, Kueh A, et al: Loss of NF-κB1 causes gastric cancer with aberrant inflammation and expression of immune checkpoint regulators in a STAT-1 dependent manner. Immunity. 48:570–583.e8. 2018. View Article : Google Scholar

82 

Zhang J, Zhu ZG, Ji J, Yuan F, Yu YY, Liu BY and Lin YZ: Transcription factor Sp1 expression in gastric cancer and its relationship to long-term prognosis. World J Gastroenterol. 11:2213–2217. 2005. View Article : Google Scholar : PubMed/NCBI

83 

Jüttner S, Cramer T, Wessler S, Walduck A, Gao F, Schmitz F, Wunder C, Weber M, Fischer SM, Schmidt WE, et al: Helicobacter pylori stimulates host cyclooxygenase-2 gene transcription: Critical importance of MEK/ERK-dependent activation of USF1/-2 and CREB transcription factors. Cell Microbiol. 5:821–834. 2003. View Article : Google Scholar : PubMed/NCBI

84 

Lu H, Wu JY, Kudo T, Ohno T, Graham DY and Yamaoka Y: Regulation of interleukin-6 promoter activation in gastric epithelial cells infected with Helicobacter pylori. Mol Biol Cell. 16:4954–4966. 2005. View Article : Google Scholar : PubMed/NCBI

85 

Bronte-Tinkew DM, Terebiznik M, Franco A, Ang M, Ahn D, Mimuro H, Sasakawa C, Ropeleski MJ, Peek RM Jr and Jones NL: Helicobacter pylori cytotoxin-associated gene A activates the signal transducer and activator of transcription 3 pathway in vitro and in vivo. Cancer Res. 69:632–639. 2009. View Article : Google Scholar : PubMed/NCBI

86 

Zhao J, Dong Y, Kang W, Go MY, Tong JH, Ng EK, Chiu PW, Cheng AS, To KF, Sung JJ, et al: Helicobacter pylori-induced STAT3 activation and signalling network in gastric cancer. Oncoscience. 1:468–475. 2014. View Article : Google Scholar

87 

Piao JY, Lee HG, Kim SJ, Kim DH, Han HJ, Ngo HK, Park SA, Woo JH, Lee JS, Na HK, et al: Helicobacter pylori activates IL-6-STAT3 signaling in human gastric cancer cells: Potential roles for reactive oxygen species. Helicobacter. 21:405–416. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Yokoyama K, Higashi H, Ishikawa S, Fujii Y, Kondo S, Kato H, Azuma T, Wada A, Hirayama T, Aburatani H, et al: Functional antagonism between Helicobacter pylori CagA and vacuolating toxin VacA in control of the NFAT signaling pathway in gastric epithelial cells. Proc Natl Acad Sci USA. 102:9661–9666. 2005. View Article : Google Scholar : PubMed/NCBI

89 

Chen G, Tang N, Wang C, Xiao L, Yu M, Zhao L, Cai H, Han L, Xie C and Zhang Y: TNF-α-inducing protein of Helicobacter pylori induces epithelial-mesenchymal transition (EMT) in gastric cancer cells through activation of IL-6/STAT3 signaling pathway. Biochem Biophys Res Commun. 484:311–317. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Mejías-Luque R, Peiró S, Vincent A, Van Seuningen I and de Bolós C: IL-6 induces MUC4 expression through gp130/STAT3 p athway in gastric cancer cell lines. Biochim Biophys Acta. 1783:1728–1736. 2008. View Article : Google Scholar

91 

Chang YJ, Wu MS, Lin JT and Chen CC: Helicobacter pylori-Induced invasion and angiogenesis of gastric cells is mediated by cyclooxy-genase-2 induction through TLR2/TLR9 and promoter regulation. J Immunol. 175:8242–8252. 2005. View Article : Google Scholar : PubMed/NCBI

92 

Lee KS, Kalantzis A, Jackson CB, O'Connor L, Murata-Kamiya N, Hatakeyama M, Judd LM, Giraud AS and Menheniott TR: Helicobacter pylori CagA triggers expression of the bactericidal lectin REG3γ via gastric STAT3 activation. PLoS One. 7:e307862012. View Article : Google Scholar

93 

Yamaoka Y, Kudo T, Lu H, Casola A, Brasier AR and Graham DY: Role of interferon-stimulated responsive element-like element in interleukin-8p romoter in Helicobacter pylori infection. Gastroenterology. 126:1030–1043. 2004. View Article : Google Scholar : PubMed/NCBI

94 

Mitchell DJ, Huynh HQ, Ceponis PJM, Jones NL and Sherman PM: Helicobacter pylori disrupts STAT1-mediated gamma interferon-induced signal transduction in epithelial cells. Infect Immun. 72:537–545. 2004. View Article : Google Scholar :

95 

Lee HS, Park CK, Oh E, Erkin ÖC, Jung HS, Cho MH, Kwon MJ, Chae SW, Kim SH, Wang LH, et al: Low SP1 expression differentially affects intestinal-type compared with diffuse-type gastric adenocarcinoma. PLoS One. 8:e555222013. View Article : Google Scholar : PubMed/NCBI

96 

Beishline K and Azizkhan-Clifford J: Sp1 and the 'hallmarks of cancer'. FEBS J. 282:224–258. 2015. View Article : Google Scholar

97 

Tomizawa M, Shinozaki F, Motoyoshi Y, Sugiyama T, Yamamoto S and Ishige N: CCAAT/enhancer-binding protein α decreases the viability of gastric cancer cells. Oncol Lett. 13:4322–4326. 2017. View Article : Google Scholar : PubMed/NCBI

98 

Peterson CL and Laniel MA: Histones and histone modifications. Curr Biol. 14:R546–R551. 2004. View Article : Google Scholar : PubMed/NCBI

99 

Agarwal V, Bell GW, Nam JW and Bartel DP: Predicting effective microRNA target sites in mammalian mRNAs. eLife. 4:e050052015. View Article : Google Scholar :

100 

John B, Enright AJ, Aravin A, Tuschl T, Sander C and Marks DS: Human microRNA targets. PLoS Biol. 3:e2642005. View Article : Google Scholar

101 

Wong N and Wang X: miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 43D:D146–D152. 2015. View Article : Google Scholar

102 

Lu TP, Lee CY, Tsai MH, Chiu YC, Hsiao CK, Lai LC and Chuang EY: miRSystem: An integrated system for characterizing enriched functions and pathways of microRNA targets. PLoS One. 7:e423902012. View Article : Google Scholar : PubMed/NCBI

103 

Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, et al: DIANA-microT web server: Elucidating microRNA functions through target prediction. Nucleic Acids Res. 37(Web Server): W273–6. 2009. View Article : Google Scholar : PubMed/NCBI

104 

Sethupathy P, Megraw M and Hatzigeorgiou AG: A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods. 3:881–886. 2006. View Article : Google Scholar : PubMed/NCBI

105 

Leitão AL, Costa MC and Enguita FJ: A guide for miRNA target prediction and analysis using web-based applications. Methods Mol Biol. 1182:265–277. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Zhi Q, Guo X, Guo L, Zhang R, Jiang J, Ji J, Zhang J, Zhang J, Chen X, Cai Q, et al: Oncogenic miR-544 is an important molecular target in gastric cancer. Anticancer Agents Med Chem. 13:270–275. 2013. View Article : Google Scholar

107 

Chaturvedi R, de Sablet T, Asim M, Piazuelo MB, Barry DP, Verriere TG, Sierra JC, Hardbower DM, Delgado AG, Schneider BG, et al: Increased Helicobacter pylori-associated gastric cancer risk in the Andean region of Colombia is mediated by spermine oxidase. Oncogene. 34:3429–3440. 2015. View Article : Google Scholar :

108 

Ishimoto T, Sugihara H, Watanabe M, Sawayama H, Iwatsuki M, Baba Y, Okabe H, Hidaka K, Yokoyama N, Miyake K, et al: Macrophage-derived reactive oxygen species suppress miR-328 targeting CD44 in cancer cells and promote redox adaptation. Carcinogenesis. 35:1003–1011. 2014. View Article : Google Scholar

109 

Libânio D, Dinis-Ribeiro M and Pimentel-Nunes P: Helicobacter pylori and microRNAs: Relation with innate immunity and progression of preneoplastic conditions. World J Clin Oncol. 6:111–132. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Zhang X, Peng Y, Jin Z, Huang W, Cheng Y, Liu Y, Feng X, Yang M, Huang Y, Zhao Z, et al: Integrated miRNA profiling and bioinformatics analyses reveal potential causative miRNAs in gastric adenocarcinoma. Oncotarget. 6:32878–32889. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Zhang W, Dahlberg JE and Tam W: MicroRNAs in tumori-genesis: A primer. Am J Pathol. 171:728–738. 2007. View Article : Google Scholar : PubMed/NCBI

112 

Noto JM and Peek RM: The role of microRNAs in Helicobacter pylori pathogenesis and gastric carcinogenesis. Front Cell Infect Microbiol. 1:212012. View Article : Google Scholar :

113 

Li N, Xu X, Xiao B, Zhu ED, Li BS, Liu Z, Tang B, Zou QM, Liang HP and Mao XH: H. pylori related proinflammatory cytokines contribute to the induction of miR-146a in human gastric epithelial cells. Mol Biol Rep. 39:4655–4661. 2012. View Article : Google Scholar

114 

Hayashi Y, Tsujii M, Wang J, Kondo J, Akasaka T, Jin Y, Li W, Nakamura T, Nishida T, Iijima H, et al: CagA mediates epigenetic regulation to attenuate let-7 expression in Helicobacter pylori-related carcinogenesis. Gut. 62:1536–1546. 2013. View Article : Google Scholar

115 

Qi J and Ronai ZA: Dysregulation of ubiquitin ligases in cancer. Drug Resist Updat. 23:1–11. 2015. View Article : Google Scholar : PubMed/NCBI

116 

Cho CH, Yu J and Wu WKK: Identification of pathogenic microRNAs in Helicobacter pylori-associated gastric cancer using a combined approach of animal study and clinical sample analysis. Hong Kong Med J. 22(Suppl 6): 13–18. 2016.PubMed/NCBI

117 

Belair C, Baud J, Chabas S, Sharma CM, Vogel J, Staedel C and Darfeuille F: Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression. Silence. 2:72011. View Article : Google Scholar : PubMed/NCBI

118 

Lauren P: The two histological main types of gastric carcinoma: Diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 64:31–49. 1965. View Article : Google Scholar : PubMed/NCBI

119 

Yu BQ, Su LP, Li JF, Cai Q, Yan M, Chen XH, Yu YY, Gu QL, Zhu ZG and Liu BY: microrna expression signature of gastric cancer cells relative to normal gastric mucosa. Mol Med Rep. 6:821–826. 2012. View Article : Google Scholar : PubMed/NCBI

120 

Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D and Wang Y: Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 24:652–657. 2009. View Article : Google Scholar : PubMed/NCBI

121 

Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu CG, Oue N, Yasui W, et al: Relation between microRNA expression and progression and prognosis of gastric cancer: A microRNA expression analysis. Lancet Oncol. 11:136–146. 2010. View Article : Google Scholar

122 

Tsukamoto Y, Nakada C, Noguchi T, Tanigawa M, Nguyen LT, Uchida T, Hijiya N, Matsuura K, Fujioka T, Seto M, et al: MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res. 70:2339–2349. 2010. View Article : Google Scholar : PubMed/NCBI

123 

Su Y, Ni Z, Wang G, Cui J, Wei C, Wang J, Yang Q, Xu Y and Li F: Aberrant expression of microRNAs in gastric cancer and biological significance of miR-574-3p. Int Immunopharmacol. 13:468–475. 2012. View Article : Google Scholar : PubMed/NCBI

124 

Juzėnas S, Saltenienė V, Kupcinskas J, Link A, Kiudelis G, Jonaitis L, Jarmalaite S, Kupcinskas L, Malfertheiner P and Skieceviciene J: Correction: Analysis of deregulated microRNAs and their target genes in gastric cancer. PLoS One. 10:e01357622015. View Article : Google Scholar

125 

Katada T, Ishiguro H, Kuwabara Y, Kimura M, Mitui A, Mori Y, Ogawa R, Harata K and Fujii Y: MicroRNA expression profile in undifferentiated gastric cancer. Int J Oncol. 34:537–542. 2009.PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 55 Issue 3

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Alarcón‑Millán, J., Martínez‑Carrillo, D.N., Peralta‑Zaragoza, O., & Fernández‑Tilapa, G. (2019). Regulation of GKN1 expression in gastric carcinogenesis: A problem to resolve (Review). International Journal of Oncology, 55, 555-569. https://doi.org/10.3892/ijo.2019.4843
MLA
Alarcón‑Millán, J., Martínez‑Carrillo, D. N., Peralta‑Zaragoza, O., Fernández‑Tilapa, G."Regulation of GKN1 expression in gastric carcinogenesis: A problem to resolve (Review)". International Journal of Oncology 55.3 (2019): 555-569.
Chicago
Alarcón‑Millán, J., Martínez‑Carrillo, D. N., Peralta‑Zaragoza, O., Fernández‑Tilapa, G."Regulation of GKN1 expression in gastric carcinogenesis: A problem to resolve (Review)". International Journal of Oncology 55, no. 3 (2019): 555-569. https://doi.org/10.3892/ijo.2019.4843