Evaluation of pro‑ and anti‑tumor effects induced by three colony‑stimulating factors, G‑CSF, GM‑CSF and M‑CSF, in bladder cancer cells: Is G‑CSF a friend of bladder cancer cells?

  • Authors:
    • Shunta Hori
    • Makito Miyake
    • Sayuri Onishi
    • Yosuke Morizawa
    • Yasushi Nakai
    • Yoshihiro Tatsumi
    • Kenta Onishi
    • Kota Iida
    • Daisuke Gotoh
    • Yoshitaka Itami
    • Nobumichi Tanaka
    • Kiyohide Fujimoto
  • View Affiliations

  • Published online on: April 4, 2019     https://doi.org/10.3892/ijo.2019.4772
  • Pages: 2237-2249
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Cytotoxic chemotherapy is the standard treatment for patients with advanced bladder cancer. However, this treatment can cause transient and prolonged neutropenia, which can result in fatal infection. Three recombinant human colony‑stimulating factors (CSFs), granulocyte CSF (G‑CSF), granulocyte‑macrophage CSF (GM‑CSF), and macrophage CSF (M‑CSF), are currently available to reduce the duration and degree of neutropenia. The present study investigated the pro‑ and anti‑tumor effects of these three CSFs and the changes in molecular profiles. Xenograft tumors in athymic mice were generated by subcutaneously inoculating the human bladder cancer cell lines MGH‑U3 and UM‑UC‑3. A total of 2 weeks after cell inoculation, mice were randomly divided into four groups (control, G‑CSF, GM‑CSF and M‑CSF) and treated thrice a week for 2 weeks. Tumor growth during monitoring and tumor weight at the time of euthanization were significantly higher in mice treated with G‑CSF and lower in mice treated with GM‑CSF compared with the control mice. Tumors were examined by immunostaining with antibodies against proteins associated tumor proliferation (Ki‑67), angiogenesis [CD31 and vascular endothelial growth factor (VEGF)], anti‑immunity (CD204) and epithelial‑mesenchymal transition (EMT; E‑cadherin). Immunohistochemical staining revealed that tumor proliferation, angiogenesis, recruitment of M2 macrophages and EMT were promoted by G‑CSF, whereas lymphangiogenesis and recruitment of M2 macrophages were inhibited by GM‑CSF. Treatment‑associated changes in serum pro‑ and anti‑tumoral cytokines and chemokines were evaluated by enzyme‑linked immunosorbent assay (ELISA)‑based arrays. In the ELISA for serum, the levels of cytokines associated with angiogenesis (interleukin‑6 and VEGF), and EMT (transforming growth factor‑β1 and ‑β2) were elevated in mice treated with G‑CSF. Treatment with GM‑CSF and M‑CSF also affected the level of these cytokines characteristically. The current results indicate that administration of exogenous G‑CSF to patients with bladder cancer promotes tumor growth through promotion of cell proliferation, angiogenesis, recruitment of M2 macrophages and enhancement of EMT through the modulation of the tumor microenvironment.

References

1 

Hori M, Matsuda T, Shibata A, Katanoda K, Sobue T and Nishimoto H; Japan Cancer Surveillance Research Group: Cancer incidence and incidence rates in Japan in 2009: A study of 32 population-based cancer registries for the Monitoring of Cancer Incidence in Japan (MCIJ) project. Jpn J Clin Oncol. 45:884–891. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Nishiyama H, Habuchi T, Watanabe J, Teramukai S, Tada H, Ono Y, Ohshima S, Fujimoto K, Hirao Y, Fukushima M, et al: Clinical outcome of a large-scale multi-institutional retrospective study for locally advanced bladder cancer: A survey including 1131 patients treated during 1990-2000 in Japan. Eur Urol. 45:176–181. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Grossman HB, Natale RB, Tangen CM, Speights VO, Vogelzang NJ, Trump DL, deVere White RW, Sarosdy MF, Wood DP Jr, Raghavan D, et al: Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med. 349:859–866. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Vale CL; Advanced Bladder Cancer (ABC) Meta-analysis Collaboration: Neoadjuvant chemotherapy in invasive bladder cancer: Update of a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-analysis collaboration. Eur Urol. 48:202–205; discussion 205–206. 2005. View Article : Google Scholar

6 

Leow JJ, Martin-Doyle W, Rajagopal PS, Patel CG, Anderson EM, Rothman AT, Cote RJ, Urun Y, Chang SL, Choueiri TK, et al: Adjuvant chemotherapy for invasive bladder cancer: A 2013 updated systematic review and meta-analysis of randomized trials. Eur Urol. 66:42–54. 2014. View Article : Google Scholar

7 

von der Maase H, Sengelov L, Roberts JT, Ricci S, Dogliotti L, Oliver T, Moore MJ, Zimmermann A and Arning M: Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol. 23:4602–4608. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Sternberg CN, de Mulder PH, Schornagel JH, Théodore C, Fossa SD, van Oosterom AT, Witjes F, Spina M, van Groeningen CJ, de Balincourt C, et al European Organization for Research and Treatment of Cancer Genitourinary Tract Cancer Cooperative Group: Randomized phase III trial of high-dose-intensity methotrexate, vinblastine, doxorubicin, and cisplatin (MVAC) chemotherapy and recombinant human granulocyte colony-stimulating factor versus classic MVAC in advanced urothelial tract tumors: European Organization for Research and Treatment of Cancer Protocol no 30924. J Clin Oncol. 19:2638–2646. 2001. View Article : Google Scholar : PubMed/NCBI

9 

Kotake T, Usami M, Miki T, Togashi M, Akaza H, Kubota Y and Matsumura Y: Effect of recombinant human granulocyte colony stimulating factor (lenograstim) on chemotherapy induced neutropenia in patients with urothelial cancer. Int J Urol. 6:61–67. 1999. View Article : Google Scholar : PubMed/NCBI

10 

García-Carbonero R, Mayordomo JI, Tornamira MV, López-Brea M, Rueda A, Guillem V, Arcediano A, Yubero A, Ribera F, Gómez C, et al: Granulocyte colony-stimulating factor in the treatment of high-risk febrile neutropenia: A multicenter randomized trial. J Natl Cancer Inst. 93:31–38. 2001. View Article : Google Scholar : PubMed/NCBI

11 

Clark OA, Lyman GH, Castro AA, Clark LG and Djulbegovic B: Colony-stimulating factors for chemotherapy-induced febrile neutropenia: A meta-analysis of randomized controlled trials. J Clin Oncol. 23:4198–4214. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Ohno R, Miyawaki S, Hatake K, Kuriyama K, Saito K, Kanamaru A, Kobayashi T, Kodera Y, Nishikawa K, Matsuda S, et al: Human urinary macrophage colony-stimulating factor reduces the incidence and duration of febrile neutropenia and shortens the period required to finish three courses of intensive consolidation therapy in acute myeloid leukemia: A double-blind controlled study. J Clin Oncol. 15:2954–2965. 1997. View Article : Google Scholar : PubMed/NCBI

13 

Barreda DR, Hanington PC and Belosevic M: Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol. 28:509–554. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Welte K, Platzer E, Lu L, Gabrilove JL, Levi E, Mertelsmann R and Moore MA: Purification and biochemical characterization of human pluripotent hematopoietic colony-stimulating factor. Proc Natl Acad Sci USA. 82:1526–1530. 1985. View Article : Google Scholar : PubMed/NCBI

15 

Chakraborty A and Guha S: Granulocyte colony-stimulating factor/granulocyte colony-stimulating factor receptor biological axis promotes survival and growth of bladder cancer cells. Urology. 69:1210–1215. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Chakraborty A, White SM and Guha S: Granulocyte colony-stimulating receptor promotes beta1-integrin-mediated adhesion and invasion of bladder cancer cells. Urology. 68:208–213. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Yokoyama T, Hyodo M, Hosoya Y, Koinuma K, Kurashina K, Saitoh S, Hirashima Y, Arai W, Zuiki T, Yasuda Y, et al: Aggressive G-CSF-producing gastric cancer complicated by lung and brain abscesses, mimicking metastases. Gastric Cancer. 8:198–201. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Li W, Zhang X, Chen Y, Xie Y, Liu J, Feng Q, Wang Y, Yuan W and Ma J: G-CSF is a key modulator of MDSC and could be a potential therapeutic target in colitis-associated colorectal cancers. Protein Cell. 7:130–140. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Demirci U, Coskun U, Sancak B, Ozturk B, Bahar B, Benekli M and Buyukberber S: Serum granulocyte macrophage-colony stimulating factor: A tumor marker in colorectal carcinoma. Asian Pac J Cancer Prev. 10:1021–1024. 2009.

20 

Urdinguio RG, Fernandez AF, Moncada-Pazos A, Huidobro C, Rodriguez RM, Ferrero C, Martinez-Camblor P, Obaya AJ, Bernal T, Parra-Blanco A, et al: Immune-dependent and independent antitumor activity of GM-CSF aberrantly expressed by mouse and human colorectal tumors. Cancer Res. 73:395–405. 2013. View Article : Google Scholar

21 

Wei XX, Chan S, Kwek S, Lewis J, Dao V, Zhang L, Cooperberg MR, Ryan CJ, Lin AM, Friedlander TW, et al: Systemic GM-CSF Recruits Effector T Cells into the Tumor Microenvironment in Localized Prostate Cancer. Cancer Immunol Res. 4:948–958. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Van Overmeire E, Stijlemans B, Heymann F, Keirsse J, Morias Y, Elkrim Y, Brys L, Abels C, Lahmar Q, Ergen C, et al: M-CSF and GM-CSF Receptor Signaling Differentially Regulate Monocyte Maturation and Macrophage Polarization in the Tumor Microenvironment. Cancer Res. 76:35–42. 2016. View Article : Google Scholar

23 

Mugabe C, Matsui Y, So AI, Gleave ME, Baker JH, Minchinton AI, Manisali I, Liggins R, Brooks DE and Burt HM: In vivo evaluation of mucoadhesive nanoparticulate docetaxel for intravesical treatment of non-muscle-invasive bladder cancer. Clin Cancer Res. 17:2788–2798. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Hori S, Miyake M, Onishi S, Tatsumi Y, Morizawa Y, Nakai Y, Anai S, Tanaka N and Fujimoto K: Clinical significance of α and β Klotho in urothelial carcinoma of the bladder. Oncol Rep. 36:2117–2125. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Weidner N, Semple JP, Welch WR and Folkman J: Tumor angiogenesis and metastasis - correlation in invasive breast carcinoma. N Engl J Med. 324:1–8. 1991. View Article : Google Scholar : PubMed/NCBI

26 

Hori S, Miyake M, Tatsumi Y, Morizawa Y, Nakai Y, Onishi S, Onishi K, Iida K, Gotoh D, Tanaka N, et al: Gamma-Klotho exhibits multiple roles in tumor growth of human bladder cancer. Oncotarget. 9:19508–19524. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Miyake M, Hori S, Morizawa Y, Tatsumi Y, Nakai Y, Anai S, Torimoto K, Aoki K, Tanaka N, Shimada K, et al: CXCL1-Mediated Interaction of Cancer Cells with Tumor-Associated Macrophages and Cancer-Associated Fibroblasts Promotes Tumor Progression in Human Bladder Cancer. Neoplasia. 18:636–646. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X, Tolliday NJ, Golub TR, Carr SA, Shamji AF, et al: Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature. 475:231–234. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Segawa K, Ueno Y and Kataoka T: In vivo tumor growth enhancement by granulocyte colony-stimulating factor. Jpn J Cancer Res. 82:440–447. 1991. View Article : Google Scholar : PubMed/NCBI

30 

Okazaki T, Ebihara S, Asada M, Kanda A, Sasaki H and Yamaya M: Granulocyte colony-stimulating factor promotes tumor angiogenesis via increasing circulating endothelial progenitor cells and Gr1+CD11b+ cells in cancer animal models. Int Immunol. 18:1–9. 2006. View Article : Google Scholar

31 

Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, et al: Impaired recruitment of bone-marrow-derived endothelial and hemato-poietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 7:1194–1201. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Davidoff AM, Ng CY, Brown P, Leary MA, Spurbeck WW, Zhou J, Horwitz E, Vanin EF and Nienhuis AW: Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin Cancer Res. 7:2870–2879. 2001.PubMed/NCBI

33 

Kelly ME, Mohan HM, Baird AW, Ryan EJ and Winter DC: Orphan Nuclear Receptors in Colorectal Cancer. Pathol Oncol Res. 24:815–819. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Lee AS, Kim D, Wagle SR, Lee JE, Jung YJ, Kang KP, Lee S, Park SK and Kim W: Granulocyte colony-stimulating factor induces in vitro lymphangiogenesis. Biochem Biophys Res Commun. 436:565–570. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Fiorentini S, Luganini A, Dell’Oste V, Lorusso B, Cervi E, Caccuri F, Bonardelli S, Landolfo S, Caruso A and Gribaudo G: Human cytomegalovirus productively infects lymphatic endo-thelial cells and induces a secretome that promotes angiogenesis and lymphangiogenesis through interleukin-6 and granu-locyte-macrophage colony-stimulating factor. J Gen Virol. 92:650–660. 2011. View Article : Google Scholar

36 

Kitoh Y, Saio M, Gotoh N, Umemura N, Nonaka K, Bai J, Vizkeleti L, Torocsik D, Balazs M, Adany R, et al: Combined GM-CSF treatment and M-CSF inhibition of tumor-associated macrophages induces dendritic cell-like signaling in vitro. Int J Oncol. 38:1409–1419. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Elghonaimy EA, Ibrahim SA, Youns A, Hussein Z, Nouh MA, El-Mamlouk T, El-Shinawi M and Mostafa Mohamed M: Secretome of tumor-associated leukocytes augment epithelial-mesenchymal transition in positive lymph node breast cancer patients via activation of EGFR/Tyr845 and NF-κB/p65 signaling pathway. Tumour Biol. 37:12441–12453. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Cui YH, Suh Y, Lee HJ, Yoo KC, Uddin N, Jeong YJ, Lee JS, Hwang SG, Nam SY, Kim MJ, et al: Radiation promotes invasiveness of non-small-cell lung cancer cells through granulocyte-colony-stimulating factor. Oncogene. 34:5372–5382. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Yan Y, Zhang J, Li JH, Liu X, Wang JZ, Qu HY, Wang JS and Duan XY: High tumor-associated macrophages infiltration is associated with poor prognosis and may contribute to the phenomenon of epithelial-mesenchymal transition in gastric cancer. OncoTargets Ther. 9:3975–3983. 2016. View Article : Google Scholar

Related Articles

Journal Cover

June 2019
Volume 54 Issue 6

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Hori, S., Miyake, M., Onishi, S., Morizawa, Y., Nakai, Y., Tatsumi, Y. ... Fujimoto, K. (2019). Evaluation of pro‑ and anti‑tumor effects induced by three colony‑stimulating factors, G‑CSF, GM‑CSF and M‑CSF, in bladder cancer cells: Is G‑CSF a friend of bladder cancer cells?. International Journal of Oncology, 54, 2237-2249. https://doi.org/10.3892/ijo.2019.4772
MLA
Hori, S., Miyake, M., Onishi, S., Morizawa, Y., Nakai, Y., Tatsumi, Y., Onishi, K., Iida, K., Gotoh, D., Itami, Y., Tanaka, N., Fujimoto, K."Evaluation of pro‑ and anti‑tumor effects induced by three colony‑stimulating factors, G‑CSF, GM‑CSF and M‑CSF, in bladder cancer cells: Is G‑CSF a friend of bladder cancer cells?". International Journal of Oncology 54.6 (2019): 2237-2249.
Chicago
Hori, S., Miyake, M., Onishi, S., Morizawa, Y., Nakai, Y., Tatsumi, Y., Onishi, K., Iida, K., Gotoh, D., Itami, Y., Tanaka, N., Fujimoto, K."Evaluation of pro‑ and anti‑tumor effects induced by three colony‑stimulating factors, G‑CSF, GM‑CSF and M‑CSF, in bladder cancer cells: Is G‑CSF a friend of bladder cancer cells?". International Journal of Oncology 54, no. 6 (2019): 2237-2249. https://doi.org/10.3892/ijo.2019.4772