Tumor‑suppressive microRNA‑223 targets WDR62 directly in bladder cancer

  • Authors:
    • Satoshi Sugita
    • Hirofumi Yoshino
    • Masaya Yonemori
    • Kazutaka Miyamoto
    • Ryosuke Matsushita
    • Takashi Sakaguchi
    • Toshihiko Itesako
    • Shuichi Tatarano
    • Masayuki Nakagawa
    • Hideki Enokida
  • View Affiliations

  • Published online on: March 22, 2019     https://doi.org/10.3892/ijo.2019.4762
  • Pages: 2222-2236
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

miRNA‑223 (miR‑223) has been reported to function not only as a tumor suppressor, but also as an oncogenic microRNA (miRNA or miR) in various cancer cells. Therefore, the functional role of miR‑223 has not been elucidated to date, at least to the best of our knowledge. We previously performed the deep sequencing analysis of clinical bladder cancer (BC) specimens. It was revealed that miR‑223 expression was significantly downregulated in BC, suggesting that miR‑223 functions as a tumor suppressor miRNA in BC. The aim of this study was to investigate the functional roles of miR‑223 and to identify its targets in BC. The expression levels of miR‑223 were significantly decreased in our clinical BC specimens. The Cancer Genome Atlas (TCGA) database indicated that miR‑223 expression was related to lymphovascular invasion and distant metastasis. The restoration of miR‑223 expression significantly inhibited tumor aggressiveness and induced apoptosis via caspase‑3/7 activation in BC cells. WD repeat domain 62 (WDR62), a candidate target of miR‑223 according to in silico analyses, has been previously proposed to play a role in neurodevelopment. Direct binding between WDR62 and miR‑223 was confirmed by luciferase assay. The TCGA database revealed positive associations between WDR62 mRNA expression and a higher tumor grade and stage in BC. The knockdown of WDR62 significantly inhibited tumor aggressiveness and induced the apoptosis of BC cells. On the whole, the findings of this study reveal a novel miR‑223 target, oncogenic WDR62, and provided insight into the oncogenesis of BC.

References

1 

Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, Forman D and Bray F: Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur J Cancer. 49:1374–1403. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Vale C; Advanced Bladder Cancer Meta-analysis Collaboration: Neoadjuvant chemotherapy in invasive bladder cancer: A systematic review and meta-analysis. Lancet. 361:1927–1934. 2003. View Article : Google Scholar

4 

von der Maase H, Hansen SW, Roberts JT, Dogliotti L, Oliver T, Moore MJ, Bodrogi I, Albers P, Knuth A, Lippert CM, et al: Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: Results of a large, randomized, multinational, multi-center, phase III study. J Clin Oncol. 18:3068–3077. 2000. View Article : Google Scholar : PubMed/NCBI

5 

Meeks JJ, Bellmunt J, Bochner BH, Clarke NW, Daneshmand S, Galsky MD, Hahn NM, Lerner SP, Mason M, Powles T, et al: A systematic review of neoadjuvant and adjuvant chemotherapy for muscle-invasive bladder cancer. Eur Urol. 62:523–533. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Carthew RW and Sontheimer EJ: Origins and Mechanisms of miRNAs and siRNAs. Cell. 136:642–655. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Friedman RC, Farh KK, Burge CB and Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19:92–105. 2009. View Article : Google Scholar :

8 

Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP and Burge CB: Prediction of mammalian microRNA targets. Cell. 115:787–798. 2003. View Article : Google Scholar : PubMed/NCBI

9 

Calin GA and Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Itesako T, Seki N, Yoshino H, Chiyomaru T, Yamasaki T, Hidaka H, Yonezawa T, Nohata N, Kinoshita T, Nakagawa M, et al: The microRNA expression signature of bladder cancer by deep sequencing: The functional significance of the miR-195/497 cluster. PLoS One. 9:e843112014. View Article : Google Scholar : PubMed/NCBI

11 

Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K, Kawahara K, Toki K, Kawakami K, Nishiyama K, et al: Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer. 125:345–352. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

13 

Yoshino H, Chiyomaru T, Enokida H, Kawakami K, Tatarano S, Nishiyama K, Nohata N, Seki N and Nakagawa M: The tumour-suppressive function of miR-1 and miR-133a targeting TAGLN2 in bladder cancer. Br J Cancer. 104:808–818. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Matsushita R, Seki N, Chiyomaru T, Inoguchi S, Ishihara T, Goto Y, Nishikawa R, Mataki H, Tatarano S, Itesako T, et al: Tumour-suppressive microRNA-144-5p directly targets CCNE1/2 as potential prognostic markers in bladder cancer. Br J Cancer. 113:282–289. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Block AL, Bauer KD, Williams TJ and Seidenfeld J: Experimental parameters and a biological standard for acridine orange detection of drug-induced alterations in chromatin condensation. Cytometry. 8:163–169. 1987. View Article : Google Scholar : PubMed/NCBI

16 

Kumar A, Sahu SK, Mohanty S, Chakrabarti S, Maji S, Reddy RR, Jha AK, Goswami C, Kundu CN, Rajasubramaniam S, et al: Kaposi sarcoma herpes virus latency associated nuclear antigen protein release the G2/M cell cycle blocks by modulating ATM/ATR mediated checkpoint pathway. PLoS One. 9:e1002282014. View Article : Google Scholar : PubMed/NCBI

17 

Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. 1976. View Article : Google Scholar : PubMed/NCBI

18 

Li B and Dewey CN: RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 12:3232011. View Article : Google Scholar : PubMed/NCBI

19 

Xiao Y, Su C and Deng T: miR-223 decreases cell proliferation and enhances cell apoptosis in acute myeloid leukemia via targeting FBXW7. Oncol Lett. 12:3531–3536. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Kawakami K, Enokida H, Chiyomaru T, Tatarano S, Yoshino H, Kagara I, Gotanda T, Tachiwada T, Nishiyama K, Nohata N, et al: The functional significance of miR-1 and miR-133a in renal cell carcinoma. Eur J Cancer. 48:827–836. 2012. View Article : Google Scholar

21 

Ishihara T, Seki N, Inoguchi S, Yoshino H, Tatarano S, Yamada Y, Itesako T, Goto Y, Nishikawa R, Nakagawa M, et al: Expression of the tumor suppressive miRNA-23b/27b cluster is a good prognostic marker in clear cell renal cell carcinoma. J Urol. 192:1822–1830. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Yamada Y, Hidaka H, Seki N, Yoshino H, Yamasaki T, Itesako T, Nakagawa M and Enokida H: Tumor-suppressive microRNA-135a inhibits cancer cell proliferation by targeting the c-MYC oncogene in renal cell carcinoma. Cancer Sci. 104:304–312. 2013. View Article : Google Scholar

23 

Yamasaki T, Seki N, Yamada Y, Yoshino H, Hidaka H, Chiyomaru T, Nohata N, Kinoshita T, Nakagawa M and Enokida H: Tumor suppressive microRNA 138 contributes to cell migration and invasion through its targeting of vimentin in renal cell carcinoma. Int J Oncol. 41:805–817. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Yoshino H, Enokida H, Itesako T, Kojima S, Kinoshita T, Tatarano S, Chiyomaru T, Nakagawa M and Seki N: Tumor-suppressive microRNA-143/145 cluster targets hexokinase-2 in renal cell carcinoma. Cancer Sci. 104:1567–1574. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Yoshino H, Enokida H, Itesako T, Tatarano S, Kinoshita T, Fuse M, Kojima S, Nakagawa M and Seki N: Epithelial-mesenchymal transition-related microRNA-200s regulate molecular targets and pathways in renal cell carcinoma. J Hum Genet. 58:508–516. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Yamasaki T, Seki N, Yoshino H, Itesako T, Hidaka H, Yamada Y, Tatarano S, Yonezawa T, Kinoshita T, Nakagawa M, et al: MicroRNA-218 inhibits cell migration and invasion in renal cell carcinoma through targeting caveolin-2 involved in focal adhesion pathway. J Urol. 190:1059–1068. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Hidaka H, Seki N, Yoshino H, Yamasaki T, Yamada Y, Nohata N, Fuse M, Nakagawa M and Enokida H: Tumor suppressive microRNA-1285 regulates novel molecular targets: Aberrant expression and functional significance in renal cell carcinoma. Oncotarget. 3:44–57. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Yamasaki T, Seki N, Yoshino H, Itesako T, Yamada Y, Tatarano S, Hidaka H, Yonezawa T, Nakagawa M and Enokida H: Tumor-suppressive microRNA-1291 directly regulates glucose transporter 1 in renal cell carcinoma. Cancer Sci. 104:1411–1419. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Zhi Y, Pan J, Shen W, He P, Zheng J, Zhou X, Lu G, Chen Z and Zhou Z: Ginkgolide B inhibits human bladder cancer cell migration and invasion through microRNA-223-3p. Cell Physiol Biochem. 39:1787–1794. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Guo J, Cao R, Yu X, Xiao Z and Chen Z: MicroRNA-223-3p inhibits human bladder cancer cell migration and invasion. Tumour Biol. 39:10104283176916782017. View Article : Google Scholar : PubMed/NCBI

31 

Zhou X, Jin W, Jia H, Yan J and Zhang G: MiR-223 promotes the cisplatin resistance of human gastric cancer cells via regulating cell cycle by targeting FBXW7. J Exp Clin Cancer Res. 34:282015. View Article : Google Scholar : PubMed/NCBI

32 

Eto K, Iwatsuki M, Watanabe M, Ishimoto T, Ida S, Imamura Y, Iwagami S, Baba Y, Sakamoto Y, Miyamoto Y, et al: The sensitivity of gastric cancer to trastuzumab is regulated by the miR-223/FBXW7 pathway. Int J Cancer. 136:1537–1545. 2015. View Article : Google Scholar

33 

Li ZW, Yang YM, Du LT, Dong Z, Wang LL, Zhang X, Zhou XJ, Zheng GX, Qu AL and Wang CX: Overexpression of miR-223 correlates with tumor metastasis and poor prognosis in patients with colorectal cancer. Med Oncol. 31:2562014. View Article : Google Scholar : PubMed/NCBI

34 

de Melo Maia B, Rodrigues IS, Akagi EM, Soares do Amaral N, Ling H, Monroig P, Soares FA, Calin GA and Rocha RM: MiR-223-5p works as an oncomiR in vulvar carcinoma by TP63 suppression. Oncotarget. 7:49217–49231. 2016.PubMed/NCBI

35 

Sun X, Li Y, Zheng M, Zuo W and Zheng W: MicroRNA-223 increases the sensitivity of triple-negative breast cancer stem cells to TRAIL-induced apoptosis by targeting HAX-1. PLoS One. 11:e01627542016. View Article : Google Scholar : PubMed/NCBI

36 

Tang Y, Wang Y, Chen Q, Qiu N, Zhao Y and You X: MiR-223 inhibited cell metastasis of human cervical cancer by modulating epithelial-mesenchymal transition. Int J Clin Exp Pathol. 8:11224–11229. 2015.PubMed/NCBI

37 

Kurozumi A, Goto Y, Matsushita R, Fukumoto I, Kato M, Nishikawa R, Sakamoto S, Enokida H, Nakagawa M, Ichikawa T, et al: Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer. Cancer Sci. 107:84–94. 2016. View Article : Google Scholar

38 

Shinmura K, Kato H, Kawanishi Y, Igarashi H, Inoue Y, Yoshimura K, Nakamura S, Fujita H, Funai K, Tanahashi M, et al: WDR62 overexpression is associated with a poor prognosis in patients with lung adenocarcinoma. Mol Carcinog. 56:1984–1991. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Wasserman T, Katsenelson K, Daniliuc S, Hasin T, Choder M and Aronheim A: A novel c-Jun N-terminal kinase (JNK)-binding protein WDR62 is recruited to stress granules and mediates a nonclassical JNK activation. Mol Biol Cell. 21:117–130. 2010. View Article : Google Scholar :

40 

Cohen-Katsenelson K, Wasserman T, Khateb S, Whitmarsh AJ and Aronheim A: Docking interactions of the JNK scaffold protein WDR62. Biochem J. 439:381–390. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Kuan CY, Yang DD, Samanta Roy DR, Davis RJ, Rakic P and Flavell RA: The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron. 22:667–676. 1999. View Article : Google Scholar : PubMed/NCBI

42 

Nicholas AK, Khurshid M, Désir J, Carvalho OP, Cox JJ, Thornton G, Kausar R, Ansar M, Ahmad W, Verloes A, et al: WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nat Genet. 42:1010–1014. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Yu TW, Mochida GH, Tischfield DJ, Sgaier SK, Flores-Sarnat L, Sergi CM, Topçu M, McDonald MT, Barry BJ, Felie JM, et al: Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat Genet. 42:1015–1020. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Xu D, Zhang F, Wang Y, Sun Y and Xu Z: Microcephaly-associated protein WDR62 regulates neurogenesis through JNK1 in the developing neocortex. Cell Rep. 6:104–116. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Pervaiz N and Abbasi AA: Molecular evolution of WDR62, a gene that regulates neocorticogenesis. Meta Gene. 9:1–9. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Zeng S, Tao Y, Huang J, Zhang S, Shen L, Yang H, Pei H, Zhong M, Zhang G, Liu T, et al: WD40 repeat-containing 62 overexpression as a novel indicator of poor prognosis for human gastric cancer. Eur J Cancer. 49:3752–3762. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Zhang Y, Tian Y, Yu JJ, He J, Luo J, Zhang S, Tang CE and Tao YM: Overexpression of WDR62 is associated with centrosome amplification in human ovarian cancer. J Ovarian Res. 6:552013. View Article : Google Scholar : PubMed/NCBI

48 

Fukasawa K: Oncogenes and tumour suppressors take on centrosomes. Nat Rev Cancer. 7:911–924. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Godinho SA, Kwon M and Pellman D: Centrosomes and cancer: How cancer cells divide with too many centrosomes. Cancer Metastasis Rev. 28:85–98. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Anderhub SJ, Krämer A and Maier B: Centrosome amplification in tumorigenesis. Cancer Lett. 322:8–17. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Chan JY: A clinical overview of centrosome amplification in human cancers. Int J Biol Sci. 7:1122–1144. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Raff JW and Basto R: Centrosome Amplification and Cancer: A Question of Sufficiency. Dev Cell. 40:217–218. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Godinho SA, Picone R, Burute M, Dagher R, Su Y, Leung CT, Polyak K, Brugge JS, Théry M and Pellman D: Oncogene-like induction of cellular invasion from centrosome amplification. Nature. 510:167–171. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 54 Issue 6

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Sugita, S., Yoshino, H., Yonemori, M., Miyamoto, K., Matsushita, R., Sakaguchi, T. ... Enokida, H. (2019). Tumor‑suppressive microRNA‑223 targets WDR62 directly in bladder cancer. International Journal of Oncology, 54, 2222-2236. https://doi.org/10.3892/ijo.2019.4762
MLA
Sugita, S., Yoshino, H., Yonemori, M., Miyamoto, K., Matsushita, R., Sakaguchi, T., Itesako, T., Tatarano, S., Nakagawa, M., Enokida, H."Tumor‑suppressive microRNA‑223 targets WDR62 directly in bladder cancer". International Journal of Oncology 54.6 (2019): 2222-2236.
Chicago
Sugita, S., Yoshino, H., Yonemori, M., Miyamoto, K., Matsushita, R., Sakaguchi, T., Itesako, T., Tatarano, S., Nakagawa, M., Enokida, H."Tumor‑suppressive microRNA‑223 targets WDR62 directly in bladder cancer". International Journal of Oncology 54, no. 6 (2019): 2222-2236. https://doi.org/10.3892/ijo.2019.4762