Droplet digital PCR as a novel system for the detection of microRNA‑34b/c methylation in circulating DNA in malignant pleural mesothelioma

  • Authors:
    • Hiroki Sato
    • Junichi Soh
    • Keisuke Aoe
    • Nobukazu Fujimoto
    • Shin Tanaka
    • Kei Namba
    • Hidejiro Torigoe
    • Kazuhiko Shien
    • Hiromasa Yamamoto
    • Shuta Tomida
    • Hiroyuki Tao
    • Kazunori Okabe
    • Takumi Kishimoto
    • Shinichi Toyooka
  • View Affiliations

  • Published online on: April 1, 2019     https://doi.org/10.3892/ijo.2019.4768
  • Pages: 2139-2148
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Malignant pleural mesothelioma (MPM) is a rare malignancy arising from the pleura that is difficult to diagnose, contributing to its dismal prognosis. Previously, we reported that the degree of microRNA (miR)‑34b/c methylation in circulating DNA is associated with the development of MPM. Herein, we present a newly developed droplet digital PCR (ddPCR)‑based assay for the detection of miR‑34b/c methylation in circulating DNA in patients with MPM. We originally prepared two probes within a short amplicon of 60 bp, designing one from the positive strand and the other from the complementary strand. The two probes functioned cooperatively, and our established assay detected DNA methylation accurately in the preliminary validation. We subsequently verified this assay using clinical samples. Serum samples from 35 cases of MPM, 29 cases of pleural plaque and 10 healthy volunteers were collected from 3 different institutions and used in this study. We divided the samples into 2 groups (group A, n=33; group B, n=41). A receiver‑operating characteristic curve analysis using the samples in group A determined the optimal cut‑off value for the diagnosis of MPM, with a sensitivity of 76.9% and a specificity of 90%. On the other hand, the use of the same criterion yielded a sensitivity of 59.1% and a specificity of 100% in group B, and corresponding values of 65.7 and 94.9% for the entire cohort, indicating a moderate sensitivity and a high specificity. In addition, when the analysis was focused on stage II or more advanced MPM, the sensitivity improved to 81.8%, suggesting the possibility that the methylated allele frequency in MPM may be associated with the stage of disease progression. On the whole, the findings of this study indicate that miR‑34b/c methylation in circulating DNA is a promising biomarker for the prediction of disease progression in patients with MPM.

References

1 

Henley SJ, Larson TC, Wu M, Antao VC, Lewis M, Pinheiro GA and Eheman C: Mesothelioma incidence in 50 states and the District of Columbia, United States, 2003-2008. Int J Occup Environ Health. 19:1–10. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Scherpereel A: Malignant pleural mesothelioma: new treatments, new hopes? Eur Respir J. 49:17003192017. View Article : Google Scholar

3 

Goudar RK: Review of pemetrexed in combination with cisplatin for the treatment of malignant pleural mesothelioma. Ther Clin Risk Manag. 4:205–211. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Toyooka S, Kishimoto T and Date H: Advances in the molecular biology of malignant mesothelioma. Acta Med Okayama. 62:1–7. 2008.PubMed/NCBI

5 

Russo M, Siravegna G, Blaszkowsky LS, Corti G, Crisafulli G, Ahronian LG, Mussolin B, Kwak EL, Buscarino M, Lazzari L, et al: Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov. 6:147–153. 2016. View Article : Google Scholar :

6 

Murtaza M, Dawson SJ, Pogrebniak K, Rueda OM, Provenzano E, Grant J, Chin SF, Tsui DW, Marass F, Gale D, et al: Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer. Nat Commun. 6:87602015. View Article : Google Scholar : PubMed/NCBI

7 

Alix-Panabières C, Schwarzenbach H and Pantel K: Circulating tumor cells and circulating tumor DNA. Annu Rev Med. 63:199–215. 2012. View Article : Google Scholar

8 

Loginov VI, Pronina IV, Burdennyy AM, Filippova EA, Kazubskaya TP, Kushlinsky DN, Utkin DO, Khodyrev DS, Kushlinskii NE, Dmitriev AA, et al: Novel miRNA genes deregulated by aberrant methylation in ovarian carcinoma are involved in metastasis. Gene. 662:28–36. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Tian Y, Wei W, Li L and Yang R: Down-regulation of miR-148a promotes metastasis by DNA methylation and is associated with prognosis of skin cancer by targeting TGIF2. Med Sci Monit. 21:3798–3805. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Croce CM: Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 10:704–714. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y and Tokino T: Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island meth-ylation in colorectal cancer. Cancer Res. 68:4123–4132. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Kubo T, Toyooka S, Tsukuda K, Sakaguchi M, Fukazawa T, Soh J, Asano H, Ueno T, Muraoka T, Yamamoto H, et al: Epigenetic silencing of microRNA-34b/c plays an important role in the pathogenesis of malignant pleural mesothelioma. Clin Cancer Res. 17:4965–4974. 2011. View Article : Google Scholar : PubMed/NCBI

13 

He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, et al: A microRNA component of the p53 tumour suppressor network. Nature. 447:1130–1134. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Corney DC, Flesken-Nikitin A, Godwin AK, Wang W and Nikitin AY: MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res. 67:8433–8438. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Suzuki R, Yamamoto E, Nojima M, Maruyama R, Yamano HO, Yoshikawa K, Kimura T, Harada T, Ashida M, Niinuma T, et al: Aberrant methylation of microRNA-34b/c is a predictive marker of metachronous gastric cancer risk. J Gastroenterol. 49:1135–1144. 2014. View Article : Google Scholar :

16 

Wu XD, Song YC, Cao PL, Zhang H, Guo Q, Yan R, Diao DM, Cheng Y and Dang CX: Detection of miR-34a and miR-34b/c in stool sample as potential screening biomarkers for noninvasive diagnosis of colorectal cancer. Med Oncol. 31:8942014. View Article : Google Scholar : PubMed/NCBI

17 

Muraoka T, Soh J, Toyooka S, Aoe K, Fujimoto N, Hashida S, Maki Y, Tanaka N, Shien K, Furukawa M, et al: The degree of microRNA-34b/c methylation in serum-circulating DNA is associated with malignant pleural mesothelioma. Lung Cancer. 82:485–490. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Oxnard GR, Paweletz CP, Kuang Y, Mach SL, O’Connell A, Messineo MM, Luke JJ, Butaney M, Kirschmeier P, Jackman DM, et al: Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res. 20:1698–1705. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, et al: High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 83:8604–8610. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Sanmamed MF, Fernández-Landázuri S, Rodríguez C, Zárate R, Lozano MD, Zubiri L, Perez-Gracia JL, Martín-Algarra S and González A: Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors. Clin Chem. 61:297–304. 2015. View Article : Google Scholar

21 

Siravegna G, Marsoni S, Siena S and Bardelli A: Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 14:531–548. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Soh J, Okumura N, Lockwood WW, Yamamoto H, Shigematsu H, Zhang W, Chari R, Shames DS, Tang X, MacAulay C, et al: Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS One. 4:e74642009. View Article : Google Scholar : PubMed/NCBI

23 

Suzawa K, Yamamoto H, Ohashi K, Hashida S, Tomida S, Kubo T, Maki Y, Soh J, Tsukuda K, Kiura K, et al: Optimal method for quantitative detection of plasma EGFR T790M mutation using droplet digital PCR system. Oncol Rep. 37:3100–3106. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Jezkova E, Kajo K, Zubor P, Grendar M, Malicherova B, Mendelova A, Dokus K, Lasabova Z, Plank L and Danko J: Methylation in promoter regions of PITX2 and RASSF1A genes in association with clinicopathological features in breast cancer patients. Tumour Biol. 37:15707–15718. 2016. View Article : Google Scholar

25 

Guo Y, Peng Y, Gao D, Zhang M, Yang W, Linghu E, Herman JG, Fuks F, Dong G and Guo M: Silencing HOXD10 by promoter region hypermethylation activates ERK signaling in hepato-cellular carcinoma. Clin Epigenetics. 9:1162017. View Article : Google Scholar

26 

Flanagan JM, Wilson A, Koo C, Masrour N, Gallon J, Loomis E, Flower K, Wilhelm-Benartzi C, Hergovich A, Cunnea P, et al: Platinum-based chemotherapy induces methylation changes in blood DNA associated with overall survival in patients with ovarian cancer. Clin Cancer Res. 23:2213–2222. 2017. View Article : Google Scholar

27 

Sun X, Yuan W, Hao F and Zhuang W: Promoter methylation of RASSF1A indicates prognosis for patients with stage II and III colorectal cancer treated with oxaliplatin-based chemotherapy. Med Sci Monit. 23:5389–5395. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Cristaudo A, Bonotti A, Guglielmi G, Fallahi P and Foddis R: Serum mesothelin and other biomarkers: What have we learned in the last decade? J Thorac Dis. 10(Suppl 2): S353–S359. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Bruno R, Alì G and Fontanini G: Molecular markers and new diagnostic methods to differentiate malignant from benign meso-thelial pleural proliferations: A literature review. J Thorac Dis. 10(Suppl 2): S342–S352. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Hu ZD, Liu XF, Liu XC, Ding CM and Hu CJ: Diagnostic accuracy of osteopontin for malignant pleural mesothelioma: A systematic review and meta-analysis. Clin Chimica Acta. 433:44–48. 2014. View Article : Google Scholar

31 

Creaney J, Dick IM, Meniawy TM, Leong SL, Leon JS, Demelker Y, Segal A, Musk AW, Lee YC, Skates SJ, et al: Comparison of fibulin-3 and mesothelin as markers in malignant mesothelioma. Thorax. 69:895–902. 2014. View Article : Google Scholar : PubMed/NCBI

32 

van Zandwijk N, Clarke C, Henderson D, Musk AW, Fong K, Nowak A, Loneragan R, McCaughan B, Boyer M, Feigen M, et al: Guidelines for the diagnosis and treatment of malignant pleural mesothelioma. J Thorac Dis. 5:E254–E307. 2013.

33 

Xu RH, Wei W, Krawczyk M, Wang W, Luo H, Flagg K, Yi S, Shi W, Quan Q, Li K, et al: Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater. 16:1155–1161. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Pishvaian MJ, Joseph Bender R, Matrisian LM, Rahib L, Hendifar A, Hoos WA, Mikhail S, Chung V, Picozzi V, Heartwell C, et al: A pilot study evaluating concordance between blood-based and patient-matched tumor molecular testing within pancreatic cancer patients participating in the Know Your Tumor (KYT) initiative. Oncotarget. 8:83446–83456. 2016.

35 

Liggett T, Melnikov A, Yi QL, Replogle C, Brand R, Kaul K, Talamonti M, Abrams RA and Levenson V: Differential methylation of cell-free circulating DNA among patients with pancreatic cancer versus chronic pancreatitis. Cancer. 116:1674–1680. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Hoque MO, Feng Q, Toure P, Dem A, Critchlow CW, Hawes SE, Wood T, Jeronimo C, Rosenbaum E, Stern J, et al: Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. J Clin Oncol. 24:4262–4269. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Worm Ørntoft MB: Review of blood-based colorectal cancer screening: how far are circulating cell-free DNA methylation markers from clinical implementation? Clin Colorectal Cancer. 17:e415–e433. 2018. View Article : Google Scholar

38 

Stewart CM, Kothari PD, Mouliere F, Mair R, Somnay S, Benayed R, Zehir A, Weigelt B, Dawson SJ, Arcila ME, et al: The value of cell-free DNA for molecular pathology. J Pathol. 244:616–627. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, Thornton K, Agrawal N, Sokoll L, Szabo SA, et al: Circulating mutant DNA to assess tumor dynamics. Nat Med. 14:985–990. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, Bartlett BR, Wang H, Luber B, Alani RM, et al: Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 6:224ra242014. View Article : Google Scholar : PubMed/NCBI

41 

Thierry AR, Mouliere F, El Messaoudi S, Mollevi C, Lopez-Crapez E, Rolet F, Gillet B, Gongora C, Dechelotte P, Robert B, et al: Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med. 20:430–435. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Zeng H, He B, Yi C and Peng J: Liquid biopsies: DNA methylation analyses in circulating cell-free DNA. J Genet Genomics. 45:185–192. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Jung M, Klotzek S, Lewandowski M, Fleischhacker M and Jung K: Changes in concentration of DNA in serum and plasma during storage of blood samples. Clin Chem. 49:1028–1029. 2003. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 54 Issue 6

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Sato, H., Soh, J., Aoe, K., Fujimoto, N., Tanaka, S., Namba, K. ... Toyooka, S. (2019). Droplet digital PCR as a novel system for the detection of microRNA‑34b/c methylation in circulating DNA in malignant pleural mesothelioma. International Journal of Oncology, 54, 2139-2148. https://doi.org/10.3892/ijo.2019.4768
MLA
Sato, H., Soh, J., Aoe, K., Fujimoto, N., Tanaka, S., Namba, K., Torigoe, H., Shien, K., Yamamoto, H., Tomida, S., Tao, H., Okabe, K., Kishimoto, T., Toyooka, S."Droplet digital PCR as a novel system for the detection of microRNA‑34b/c methylation in circulating DNA in malignant pleural mesothelioma". International Journal of Oncology 54.6 (2019): 2139-2148.
Chicago
Sato, H., Soh, J., Aoe, K., Fujimoto, N., Tanaka, S., Namba, K., Torigoe, H., Shien, K., Yamamoto, H., Tomida, S., Tao, H., Okabe, K., Kishimoto, T., Toyooka, S."Droplet digital PCR as a novel system for the detection of microRNA‑34b/c methylation in circulating DNA in malignant pleural mesothelioma". International Journal of Oncology 54, no. 6 (2019): 2139-2148. https://doi.org/10.3892/ijo.2019.4768