Open Access

Antitumor activity of ginsenoside Rg3 in melanoma through downregulation of the ERK and Akt pathways

  • Authors:
    • Lingbin Meng
    • Rui Ji
    • Xiaoming Dong
    • Xiaochun Xu
    • Ying Xin
    • Xin Jiang
  • View Affiliations

  • Published online on: April 16, 2019     https://doi.org/10.3892/ijo.2019.4787
  • Pages: 2069-2079
  • Copyright: © Meng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Advanced metastatic melanoma is a malignant tumor for which there is currently no effective treatment due to resistance development. Ginsenoside Rg3, a saponin component extracted from ginseng roots, has been shown to reduce melanoma cell proliferation by decreasing histone deacetylase 3 and increasing p53 acetylation. The availability of data on the role of Rg3 in melanoma is currently extremely limited. The aim of the present study was to further investigate the effects of Rg3 on B16 melanoma cells and the underlying molecular events. The findings demonstrated that Rg3 suppressed the proliferation and DNA synthesis of B16 cells. Rg3 exposure induced tumor cell cycle arrest at the S phase and reduced the expression of proliferating cell nuclear antigen (PCNA). Rg3 treatment also decreased metastasis of B16 cells in vitro and in vivo. The results indicated that this reduction was due to downregulation of matrix metalloproteinase (MMP)‑2 and MMP‑9. Moreover, Rg3 inhibited melanoma‑induced angiogenesis, most likely by downregulating vascular endothelial growth factor (VEGF) in B16 cells. Rg3 exposure decreased the expression of VEGF in B16 cells and the VEGF downregulation further suppressed angiogenesis by attenuating the proliferation and migration of vascular endothelial cells. Finally, the western blotting data demonstrated that Rg3 reduced the expression of extracellular signal‑regulated kinase (ERK) and protein kinase B (Akt) in vitro and in vivo. This result indicated that the antimelanoma effects of Rg3 may be mediated through suppression of ERK and Akt signaling. Further research is required to assess the value of Rg3 as a novel therapeutic strategy for melanoma in the clinical setting.

References

1 

Clark WH Jr, Elder DE and Van Horn M: The biologic forms of malignant melanoma. Hum Pathol. 17:443–450. 1986. View Article : Google Scholar : PubMed/NCBI

2 

Freedman DM, Dosemeci M and McGlynn K: Sunlight and mortality from breast, ovarian, colon, prostate, and non-melanoma skin cancer: A composite death certificate based case-control study. Occup Environ Med. 59:257–262. 2002. View Article : Google Scholar : PubMed/NCBI

3 

Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR, Buzaid AC, Cochran AJ, Coit DG, Ding S, et al: Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 27:6199–6206. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Burke EE and Zager JS: Pharmacokinetic drug evaluation of tali-mogene laherparepvec for the treatment of advanced melanoma. Expert Opin Drug Metab Toxicol. 14:469–473. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Singh AD, Turell ME and Topham AK: Uveal melanoma: Trends in incidence, treatment, and survival. Ophthalmology. 118:1881–1885. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Balch CM, Buzaid AC, Soong S-J, Atkins MB, Cascinelli N, Coit DG, Fleming ID, Gershenwald JE, Houghton A Jr, Kirkwood JM, et al: Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J Clin Oncol. 19:3635–3648. 2001. View Article : Google Scholar : PubMed/NCBI

7 

Bhatia S, Tykodi SS and Thompson JA: Treatment of metastatic melanoma: An overview. Oncology (Williston Park). 23:488–496. 2009.

8 

Cerezo M, Tichet M, Abbe P, Ohanna M, Lehraiki A, Rouaud F, Allegra M, Giacchero D, Bahadoran P, Bertolotto C, et al: Metformin blocks melanoma invasion and metastasis development in a AMPK/p53-dependent manner. Molecular cancer therapeutics:. Mol Cancer Ther. 12:1605–1615. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Kim H-S, Kim M-J, Kim EJ, Yang Y, Lee M-S and Lim J-S: Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression. Biochem Pharmacol. 83:385–394. 2012. View Article : Google Scholar

10 

Woodard J and Platanias LC: AMP-activated kinase (AMPK)-generated signals in malignant melanoma cell growth and survival. Biochem Biophys Res Commun. 398:135–139. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Meier F, Schittek B, Busch S, Garbe C, Smalley K, Satyamoorthy K, Li G and Herlyn M: The RAS/RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Front Biosci. 10:2986–3001. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Shimizu T, Tolcher AW, Papadopoulos KP, Beeram M, Rasco DW, Smith LS, Gunn S, Smetzer L, Mays TA, Kaiser B, et al: The clinical effect of the dual-targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer. Clin Cancer Res. 18:2316–2325. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Davies MA: The role of the PI3K-AKT pathway in melanoma. Cancer J. 18:142–147. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Zimmer L, Hillen U, Livingstone E, Lacouture ME, Busam K, Carvajal RD, Egberts F, Hauschild A, Kashani-Sabet M, Goldinger SM, et al: Atypical melanocytic proliferations and new primary melanomas in patients with advanced melanoma undergoing selective BRAF inhibition. J Clin Oncol. 30:2375–2383. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Vultur A, Villanueva J and Herlyn M: Targeting BRAF in advanced melanoma: A first step toward manageable disease. Clin Cancer Res. 17:1658–1663. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Montone KT, Elenitsas R and Elder D: Proto-oncogene c-kit expression in malignant melanoma: protein loss with tumor progression. Mod Pathol. 10:939–944. 1997.PubMed/NCBI

17 

Carvajal RD, Antonescu CR, Wolchok JD, Chapman PB, Roman RA, Teitcher J, Panageas KS, Busam KJ, Chmielowski B, Lutzky J, et al: KIT as a therapeutic target in metastatic melanoma. JAMA. 305:2327–2334. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Dumaz N, Hayward R, Martin J, Ogilvie L, Hedley D, Curtin JA, Bastian BC, Springer C and Marais R: In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res. 66:9483–9491. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Fernández-Medarde A and Santos E: Ras in cancer and developmental diseases. Genes Cancer. 2:344–358. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Dhomen N and Marais R: BRAF signaling and targeted therapies in melanoma. Hematol Oncol Clin North Am. 23:529–545. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Guo J, Si L, Kong Y, Flaherty KT, Xu X, Zhu Y, Corless CL, Li L, Li H, Sheng X, et al: Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol. 29:2904–2909. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R, Einhorn E, Herlyn M, Minna J, Nicholson A, et al: BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 62:6997–7000. 2002.PubMed/NCBI

23 

Mahoney KM, Freeman GJ and McDermott DF: The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther. 37:764–782. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, Weber JS, Joshua AM, Hwu WJ, Gangadhar TC, et al: Anti-p rogrammed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: A randomised dose-comparison cohort of a phase 1 trial. Lancet. 384:1109–1117. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, et al: Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 372:320–330. 2015. View Article : Google Scholar

26 

Wu R, Ru Q, Chen L, Ma B and Li C: Stereospecificity of ginse-noside Rg3 in the promotion of cellular immunity in hepatoma H22-bearing mice. J Food Sci. 79:H1430–H1435. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Yang LQ, Wang B, Gan H, Fu ST, Zhu XX, Wu ZN, Zhan DW, Gu RL, Dou GF and Meng ZY: Enhanced oral bioavailability and anti-tumour effect of paclitaxel by 20(s)-ginsenoside Rg3 in vivo. Biopharm Drug Dispos. 33:425–436. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Lee SY, Kim GT, Roh SH, Song JS, Kim HJ, Hong SS, Kwon SW and Park JH: Proteomic analysis of the anti-cancer effect of 20S-ginsenoside Rg3 in human colon cancer cell lines. Biosci Biotechnol Biochem. 73:811–816. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Kim SM, Lee SY, Yuk DY, Moon DC, Choi SS, Kim Y, Han SB, Oh KW and Hong JT: Inhibition of NF-kappaB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel. Arch Pharm Res. 32:755–765. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Zheng Y, Zhang L and Lu Q, Wang X, Yu F, Wang X and Lu Q: NGF-induced Tyro3 and Axl function as survival factors for differentiating PC12 cells. Biochem Biophys Res Commun. 378:371–375. 2009. View Article : Google Scholar

31 

Zhang Q, Kang X and Zhao W: Antiangiogenic effect of low-dose cyclophosphamide combined with ginsenoside Rg3 on Lewis lung carcinoma. Biochem Biophys Res Commun. 342:824–828. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Zhang Q, Kang X, Yang B, Wang J and Yang F: Antiangiogenic effect of capecitabine combined with ginsenoside Rg3 on breast cancer in mice. Cancer Biother Radiopharm. 23:647–653. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Wang J-H, Nao J-F, Zhang M and He P: 20(s)-ginsenoside Rg3 promotes apoptosis in human ovarian cancer HO-8910 cells through PI3K/Akt and XIAP pathways. Tumour Biol. 35:11985–11994. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Liu T, Zhao L, Zhang Y, Chen W, Liu D, Hou H, Ding L and Li X: Ginsenoside 20(S)-Rg3 targets HIF-1α to block hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells. PLoS One. 9:e1038872014. View Article : Google Scholar

35 

Zhang F, Li M, Wu X, Hu Y, Cao Y, Wang X, Xiang S, Li H, Jiang L, Tan Z, et al: 20(S)-ginsenoside Rg3 promotes senescence and apoptosis in gallbladder cancer cells via the p53 pathway. Drug Des Devel Ther. 9:3969–3987. 2015.PubMed/NCBI

36 

Sin S, Kim SY and Kim SS: Chronic treatment with ginsenoside Rg3 induces Akt-dependent senescence in human glioma cells. Int J Oncol. 41:1669–1674. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Liu G-Y, Bu X, Yan H and Jia WW-G: 20S-protopanaxadiol-induced programmed cell death in glioma cells through caspase-dependent and -independent pathways. J Nat Prod. 70:259–264. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Qiu X-M, Bai X, Jiang H-F, He P and Wang J-H: 20-(s)-ginse-noside Rg3 induces apoptotic cell death in human leukemic U937 and HL-60 cells through PI3K/Akt pathways. Anticancer Drugs. 25:1072–1080. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Lee J-Y, Jung KH, Morgan MJ, Kang YR, Lee HS, Koo GB, Hong SS, Kwon SW and Kim YS: Sensitization of TRAIL-induced cell death by 20(S)-ginsenoside Rg3 via CHOP-mediated DR5 upregulation in human hepatocellular carcinoma cells. Mol Cancer Ther. 12:274–285. 2013. View Article : Google Scholar

40 

Park H-M, Kim S-J, Kim J-S and Kang H-S: Reactive oxygen species mediated ginsenoside Rg3- and Rh2-induced apoptosis in hepatoma cells through mitochondrial signaling pathways. Food Chem Toxicol. 50:2736–2741. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Keum Y-S, Han SS, Chun K-S, Park KK, Park JH, Lee SK and Surh YJ: Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase-2 expression, NF-kappaB activation and tumor promotion. Mutat Res. 523–524. 75–85. 2003.

42 

Kang L-J, Choi Y-J and Lee S-G: Stimulation of TRAF6/TAK1 degradation and inhibition of JNK/AP-1 signalling by ginse-noside Rg3 attenuates hepatitis B virus replication. Int J Biochem Cell Biol. 45:2612–2621. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Liu T-G, Huang Y, Cui D-D, Huang XB, Mao SH, Ji LL, Song HB and Yi C: Inhibitory effect of ginsenoside Rg3 combined with gemcitabine on angiogenesis and growth of lung cancer in mice. BMC Cancer. 9:2502009. View Article : Google Scholar : PubMed/NCBI

44 

Kim J-W, Jung S-Y, Kwon Y-H, Lee JH, Lee YM, Lee BY and Kwon SM: Ginsenoside Rg3 attenuates tumor angiogenesis via inhibiting bioactivities of endothelial progenitor cells. Cancer Biol Ther. 13:504–515. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Yuan HD, Quan H-Y, Zhang Y, Kim SH and Chung SH: 20(S)-Ginsenoside Rg3-induced apoptosis in HT-29 colon cancer cells is associated with AMPK signaling pathway. Mol Med Rep. 3:825–831. 2010.

46 

Covington KR, Brusco L, Barone I, Tsimelzon A, Selever J, Corona-Rodriguez A, Brown P, Kumar R, Hilsenbeck SG and Fuqua SA: Metastasis tumor-associated protein 2 enhances metastatic behavior and is associated with poor outcomes in estrogen receptor-negative breast cancer. Breast Cancer Res Treat. 141:375–384. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Ji R, Tian S, Lu HJ and Lu Q, Zheng Y, Wang X, Ding J, Li Q and Lu Q: TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation. J Immunol. 191:6165–6177. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Weidner N, Semple JP, Welch WR and Folkman J: Tumor angiogenesis and metastasis - correlation in invasive breast carcinoma. N Engl J Med. 324:1–8. 1991. View Article : Google Scholar : PubMed/NCBI

49 

Wieczorek E, Jablonska E, Wasowicz W and Reszka E: Matrix metalloproteinases and genetic mouse models in cancer research: A mini-review. Tumour Biol. 36:163–175. 2015. View Article : Google Scholar :

50 

Foda HD and Zucker S: Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discov Today. 6:478–482. 2001. View Article : Google Scholar : PubMed/NCBI

51 

Folkman J: Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 29(Suppl 16): 15–18. 2002. View Article : Google Scholar

52 

Carmeliet P: VEGF as a key mediator of angiogenesis in cancer. Oncology. 69(Suppl 3): 4–10. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Shan X, Fu Y-S, Aziz F, Wang X-Q, Yan Q and Liu J-W: Ginsenoside Rg3 inhibits melanoma cell proliferation through down-regulation of histone deacetylase 3 (HDAC3) and increase of p53 acetylation. PLoS One. 9:e1154012014. View Article : Google Scholar : PubMed/NCBI

54 

Molinari M: Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif. 33:261–274. 2000. View Article : Google Scholar : PubMed/NCBI

55 

Waga S, Hannon GJ, Beach D and Stillman B: The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature. 369:574–578. 1994. View Article : Google Scholar : PubMed/NCBI

56 

Deryugina EI and Quigley JP: Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 25:9–34. 2006. View Article : Google Scholar : PubMed/NCBI

57 

John A and Tuszynski G: The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res. 7:14–23. 2001. View Article : Google Scholar : PubMed/NCBI

58 

Zheng H, Takahashi H, Murai Y, Cui Z, Nomoto K, Niwa H, Tsuneyama K and Takano Y: Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res. 26A:3579–3583. 2006.

59 

Adya R, Tan BK, Punn A, Chen J and Randeva HS: Visfatin induces human endothelial VEGF and MMP-2/9 production via MAPK and PI3K/Akt signalling pathways: Novel insights into visfatin-induced angiogenesis. Cardiovasc Res. 78:356–365. 2008. View Article : Google Scholar

60 

Ferrara N: VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer. 2:795–803. 2002. View Article : Google Scholar : PubMed/NCBI

61 

Bauvois B: New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: Outside-in signaling and relationship to tumor progression. Biochim Biophys Acta. 1825:29–36. 2012.

62 

Kim B-M, Kim D-H, Park J-H, Surh Y-J and Na H-K: Ginsenoside Rg3 inhibits constitutive activation of NF-κB signaling in human breast cancer (MDA-MB-231) cells: ERK and Akt as potential upstream targets. J Cancer Prev. 19:23–30. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Wei X, Chen J, Su F, Su X, Hu T and Hu S: Stereospecificity of ginsenoside Rg3 in promotion of the immune response to ovalbumin in mice. Int Immunol. 24:465–471. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Janeway CA, Travers P, Walport M and Shlomchik MJ: Manipulation of the Immune Response. Immunobiology: the immune system in health and disease 6th edition Garland Science New York, NY: pp. 665–706. 2005

65 

Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, Olszanski AJ, Malvehy J, Cebon J, Fernandez E, et al: Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 170:1109–1119. e11102017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 54 Issue 6

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Meng, L., Ji, R., Dong, X., Xu, X., Xin, Y., & Jiang, X. (2019). Antitumor activity of ginsenoside Rg3 in melanoma through downregulation of the ERK and Akt pathways. International Journal of Oncology, 54, 2069-2079. https://doi.org/10.3892/ijo.2019.4787
MLA
Meng, L., Ji, R., Dong, X., Xu, X., Xin, Y., Jiang, X."Antitumor activity of ginsenoside Rg3 in melanoma through downregulation of the ERK and Akt pathways". International Journal of Oncology 54.6 (2019): 2069-2079.
Chicago
Meng, L., Ji, R., Dong, X., Xu, X., Xin, Y., Jiang, X."Antitumor activity of ginsenoside Rg3 in melanoma through downregulation of the ERK and Akt pathways". International Journal of Oncology 54, no. 6 (2019): 2069-2079. https://doi.org/10.3892/ijo.2019.4787