Open Access

Simvastatin delays castration‑resistant prostate cancer metastasis and androgen receptor antagonist resistance by regulating the expression of caveolin‑1

  • Authors:
    • Yingying Gao
    • Luo Li
    • Ting Li
    • Lei Ma
    • Mengjuan Yuan
    • Wei Sun
    • Hong Lin Cheng
    • Lingfang Niu
    • Zhongbo Du
    • Zhen Quan
    • Yanru Fan
    • Jiaxin Fan
    • Chunli Luo
    • Xiaohou Wu
  • View Affiliations

  • Published online on: April 5, 2019     https://doi.org/10.3892/ijo.2019.4774
  • Pages: 2054-2068
  • Copyright: © Gao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The failure of androgen deprivation therapy in prostate cancer treatment mainly results from drug resistance to androgen receptor antagonists. Although an aberrant caveolin‑1 (Cav‑1) expression has been reported in multiple tumor cell lines, it is unknown whether it is responsible for the progression of castration‑resistant prostate cancer (CRPC). Thus, the aim of the present study was to determine whether Cav‑1 can be used as a key molecule for the prevention and treatment of CRPC, and to explore its mechanism of action in CRPC. For this purpose, tissue and serum samples from patients with primary prostate cancer and CRPC were analyzed using immunohistochemistry and enzyme‑linked immunosorbent assay, which revealed that Cav‑1 was overexpressed in CRPC. Furthermore, Kaplan‑Meier survival analysis and univariate Cox proportional hazards regression analysis demonstrated that Cav‑1 expression in tumors was an independent risk factor for the occurrence of CRPC and was associated with a shorter recurrence‑free survival time in patients with CRPC. Receiver operating characteristic curves suggested that serum Cav‑1 could be used as a diagnostic biomarker for CRPC (area under the curve, 0.876) using a cut‑off value of 0.68 ng/ml (with a sensitivity of 82.1% and specificity of 80%). In addition, it was determined that Cav‑1 induced the invasion and migration of CRPC cells by the activation of the H‑Ras/phosphoinositide‑specific phospholipase Cε signaling cascade in the cell membrane caveolae. Importantly, simvastatin was able to augment the anticancer effects of androgen receptor antagonists by downregulating the expression of Cav‑1. Collectively, the findings of this study provide evidence that Cav‑1 is a promising predictive biomarker for CRPC and that lowering cholesterol levels with simvastatin or interfering with the expression of Cav‑1 may prove to be a useful strategy with which to prevent and/or treat CRPC.

References

1 

Watson PA, Arora VK and Sawyers CL: Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 15:701–711. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Wang C, Peng G, Huang H, Liu F, Kong DP, Dong KQ, Dai LH, Zhou Z, Wang KJ, et al: Blocking the feedback loop between neuroendocrine differentiation and macrophages improves the therapeutic effects of enzalutamide (MDV3100) on prostate cancer. Clin Cancer Res. 24:708–723. 2018. View Article : Google Scholar

3 

Zhu G, Yan W, He HC, Bi XC, Han ZD, Dai QS, Ye YK, Liang YX, Wang J and Zhong W: Inhibition of proliferation, invasion, and migration of prostate cancer cells by downregulating elongation factor-1alpha expression. Mol Med. 15:363–370. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Shiota M, Fujimoto N, Imada K, Yokomizo A, Itsumi M, Takeuchi A, Kuruma H, Inokuchi J, Tatsugami K, Uchiumi T, et al: Potential role for YB-1 in castration-resistant prostate cancer and resistance to enzalutamide through the androgen receptor V7. J Natl Cancer Inst. Feb 8;1082016.Epub ahead of print. View Article : Google Scholar

5 

de Bono JS, Chowdhury S, Feyerabend S, Elliott T, Grande E, Melhem-Bertrandt A, Baron B, Hirmand M, Werbrouck P and Fizazi K: Antitumour activity and safety of enzalutamide in patients with metastatic castration-resistant prostate cancer previously treated with abiraterone acetate plus prednisone for ≥24 weeks in Europe. Eur Urol. 74:37–45. 2018. View Article : Google Scholar

6 

Penson DF, Armstrong AJ, Concepcion R, Agarwal N, Olsson C, Karsh L, Dunshee C, Wang F, Wu K, Krivoshik A, et al: Enzalutamide versus bicalutamide in castration-resistant prostate cancer: The STRIVE Trial. J Clin Oncol. 34:2098–2106. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, Chen Y, Mohammad TA, Chen Y, Fedor HL, et al: AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 371:1028–1038. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Efstathiou E, Titus M, Wen S, Hoang A, Karlou M, Ashe R, Tu SM, Aparicio A, Troncoso P, Mohler J, et al: Molecular characterization of enzalutamide-treated bone metastatic castration-resistant prostate cancer. Eur Urol. 67:53–60. 2015. View Article : Google Scholar

9 

Crona DJ, Milowsky MI and Whang YE: Androgen receptor targeting drugs in castration-resistant prostate cancer and mechanisms of resistance. Clin Pharmacol Ther. 98:582–589. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Coffey K and Robson CN: Regulation of the androgen receptor by post-translational modifications. J Endocrinol. 215:221–237. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Couet J, Belanger MM, Roussel E and Drolet MC: Cell biology of caveolae and caveolin. Adv Drug Deliv Rev. 49:223–235. 2001. View Article : Google Scholar : PubMed/NCBI

12 

Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S and Lisanti MP: Caveolin-1 and cancer metabolism in the tumor microenvironment: Markers, models, and mechanisms. Annu Rev Pathol. 7:423–467. 2012. View Article : Google Scholar

13 

Chatterjee M, Ben-Josef E, Thomas DG, Morgan MA, Zalupski MM, Khan G, Andrew Robinson C, Griffith KA, Chen CS, Ludwig T, et al: Caveolin-1 is associated with tumor progression and confers a multi-modality resistance phenotype in pancreatic cancer. Sci Rep. 5:108672015. View Article : Google Scholar : PubMed/NCBI

14 

Wang Y, Roche O, Xu C, Moriyama EH, Heir P, Chung J, Roos FC, Chen Y, Finak G, Milosevic M, et al: Hypoxia promotes ligand-independent EGF receptor signaling via hypoxia-inducible factor-mediated upregulation of caveolin-1. Proc Natl Acad Sci USA. 109:4892–4897. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Nwosu ZC, Ebert MP, Dooley S and Meyer C: Caveolin-1 in the regulation of cell metabolism: A cancer perspective. Mol Cancer. 15:712016. View Article : Google Scholar : PubMed/NCBI

16 

Quest AF, Gutierrez-Pajares JL and Torres VA: Caveolin-1: An ambiguous partner in cell signalling and cancer. J Cell Mol Med. 12:1130–1150. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Hehlgans S and Cordes N: Caveolin-1: An essential modulator of cancer cell radio-and chemoresistance. Am J Cancer Res. 1:521–530. 2011.PubMed/NCBI

18 

Smrcka AV, Brown JH and Holz GG: Role of phospholipase Cε in physiological phosphoinositide signaling networks. Cell Signal. 24:1333–1343. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Samatar AA and Poulikakos PI: Targeting RAS-ERK signalling in cancer: Promises and challenges. Nat Rev Drug Discov. 13:928–942. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Zhang RY, Du WQ, Zhang YC, Zheng JN and Pei DS: PLCε signaling in cancer. J Cancer Res Clin Oncol. 142:715–722. 2016. View Article : Google Scholar

21 

Du HF, Ou LP, Yang X, Song XD, Fan YR, Tan B, Luo CL and Wu XH: A new PKCα/β/TBX3/E-cadherin pathway is involved in PLCε-regulated invasion and migration in human bladder cancer cells. Cell Signal. 26:580–593. 2014. View Article : Google Scholar

22 

Wang Y, Wu X, Ou L, Yang X, Wang X, Tang M, Chen E and Luo C: PLCε knockdown inhibits prostate cancer cell proliferation via suppression of Notch signalling and nuclear translocation of the androgen receptor. Cancer Lett. 362:61–69. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Cornford P, Bellmunt J, Bolla M, Briers E, De Santis M, Gross T, Henry AM, Joniau S, Lam TB, Mason MD, et al: EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: Treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol. 71:630–642. 2017. View Article : Google Scholar

24 

Du Z, Li L, Sun W, Wang X, Zhang Y, Chen Z, Yuan M, Quan Z, Liu N, Hao Y, et al: HepaCAM inhibits the malignant behavior of castration-resistant prostate cancer cells by downregulating Notch signaling and PF-3084014 (a γ-secretase inhibitor) partly reverses the resistance of refractory prostate cancer to docetaxel and enzalutamid in vitro. Int J Oncol. 53:99–112. 2018.PubMed/NCBI

25 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

26 

Kortum RL, Fernandez MR, Costanzo-Garvey DL, Johnson HJ, Fisher KW, Volle DJ and Lewis RE: Caveolin-1 is required for kinase suppressor of Ras 1 (KSR1)-mediated extracellular signal-regulated kinase 1/2 activation, H-RasV12-induced senescence, and transformation. Mol Cell Biol. 34:3461–3472. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Lingwood D and Simons K: Detergent resistance as a tool in membrane research. Nat Protoc. 2:2159–2165. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Quan Z, He Y, Luo C, Xia Y, Zhao Y, Liu N and Wu X: Interleukin 6 induces cell proliferation of clear cell renal cell carcinoma by suppressing hepaCAM via the STAT3-dependent up-regulation of DNMT1 or DNMT3b. Cell Signal. 32:48–58. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Murata M, Peränen J, Schreiner R, Wieland F, Kurzchalia TV and Simons K: VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci USA. 92:10339–10343. 1995. View Article : Google Scholar : PubMed/NCBI

30 

Mullen PJ, Yu R, Longo J, Archer MC and Penn LZ: The interplay between cell signalling and the mevalonate pathway in cancer. Nat Rev Cancer. 16:718–731. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Yang B, Bhusari S, Kueck J, Weeratunga P, Wagner J, Leverson G, Huang W and Jarrard DF: Methylation profiling defines an extensive field defect in histologically normal prostate tissues associated with prostate cancer. Neoplasia. 15:399–408. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Sotgia F, Rui H, Bonuccelli G, Mercier I, Pestell RG and Lisanti MP: Caveolin-1, mammary stem cells, and estrogen-dependent breast cancers. Cancer Res. 66:10647–10651. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Tahir SA, Yang G, Ebara S, Timme TL, Satoh T, Li L, Goltsov A, Ittmann M, Morrisett JD and Thompson TC: Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Res. 61:3882–3885. 2001.PubMed/NCBI

34 

Timme TL, Goltsov A, Tahir S, Li L, Wang J, Ren C, Johnston RN and Thompson TC: Caveolin-1 is regulated by c-myc and suppresses c-myc-induced apoptosis. Oncogene. 19:3256–3265. 2000. View Article : Google Scholar : PubMed/NCBI

35 

Senetta R, Stella G, Pozzi E, Sturli N, Massi D and Cassoni P: Caveolin-1 as a promoter of tumour spreading: When, how, where and why. J Cell Mol Med. 17:325–336. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Mi L, Zhu F, Yang X, Lu J, Zheng Y, Zhao Q, Wen X, Lu A, Wang M, Zheng M, et al: The metastatic suppressor NDRG1 inhibits EMT, migration and invasion through interaction and promotion of caveolin-1 ubiquitylation in human colorectal cancer cells. Oncogene. 36:4323–4335. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Yamaguchi H, Takeo Y, Yoshida S, Kouchi Z, Nakamura Y and Fukami K: Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. Cancer Res. 69:8594–8602. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Senetta R, Trevisan E, Rudà R, Maldi E, Molinaro L, Lefranc F, Chiusa L, Lanotte M, Soffietti R and Cassoni P: Caveolin 1 expression independently predicts shorter survival in oligoden-drogliomas. J Neuropathol Exp Neurol. 68:425–431. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Burgermeister E, Liscovitch M, Röcken C, Schmid RM and Ebert MP: Caveats of caveolin-1 in cancer progression. Cancer Lett. 268:187–201. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Tse EY, Ko FC, Tung EK, Chan LK, Lee TK, Ngan ES, Man K, Wong AS, Ng IO and Yam JW: Caveolin-1 overexpression is associated with hepatocellular carcinoma tumourigenesis and metastasis. J Pathol. 226:645–653. 2012. View Article : Google Scholar

41 

Pandey V, Vijayakumar MV, Ajay AK, Malvi P and Bhat MK: Diet-induced obesity increases melanoma progression: Involvement of Cav-1 and FASN. Int J Cancer. 130:497–508. 2012. View Article : Google Scholar

42 

Hancock JF: Ras proteins: Different signals from different locations. Nat Rev Mol Cell Biol. 4:373–384. 2003. View Article : Google Scholar : PubMed/NCBI

43 

Bivona TG and Philips MR: Ras pathway signaling on endomembranes. Curr Opin Cell Biol. 15:136–142. 2003. View Article : Google Scholar : PubMed/NCBI

44 

Castellano E, Molina-Arcas M, Krygowska AA, East P, Warne P, Nicol A and Downward J: RAS signalling through PI3-kinase controls cell migration via modulation of Reelin expression. Nat Commun. 7:112452016. View Article : Google Scholar : PubMed/NCBI

45 

Okada T, Sinha S, Esposito I, Schiavon G, López-Lago MA, Su W, Pratilas CA, Abele C, Hernandez JM, Ohara M, et al: The Rho GTPase Rnd1 suppresses mammary tumorigenesis and EMT by restraining Ras-MAPK signalling. Nat Cell Biol. 17:81–94. 2015. View Article : Google Scholar

46 

Mazur PK, Reynoird N, Khatri P, Jansen PW, Wilkinson AW, Liu S, Barbash O, Van Aller GS, Huddleston M, Dhanak D, et al: SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature. 510:283–287. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Leon CG, Locke JA, Adomat HH, Etinger SL, Twiddy AL, Neumann RD, Nelson CC, Guns ES and Wasan KM: Alterations in cholesterol regulation contribute to the production of intra-tumoral androgens during progression to castration-resistant prostate cancer in a mouse xenograft model. Prostate. 70:390–400. 2010.

48 

Yuan X, Cai C, Chen S, Chen S, Yu Z and Balk SP: Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene. 33:2815–2825. 2014. View Article : Google Scholar

49 

Holzbeierlein J, Lal P, LaTulippe E, Smith A, Satagopan J, Zhang L, Ryan C, Smith S, Scher H, Scardino P, et al: Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol. 164:217–227. 2004. View Article : Google Scholar

50 

Ettinger SL, Sobel R, Whitmore TG, Akbari M, Bradley DR, Gleave ME and Nelson CC: Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res. 64:2212–2221. 2004. View Article : Google Scholar : PubMed/NCBI

51 

Han W, Gao S, Barrett D, Ahmed M, Han D, Macoska JA, He HH and Cai C: Reactivation of androgen receptor-regulated lipid biosynthesis drives the progression of castration-resistant prostate cancer. Oncogene. 37:710–721. 2018. View Article : Google Scholar :

Related Articles

Journal Cover

June 2019
Volume 54 Issue 6

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Gao, Y., Li, L., Li, T., Ma, L., Yuan, M., Sun, W. ... Wu, X. (2019). Simvastatin delays castration‑resistant prostate cancer metastasis and androgen receptor antagonist resistance by regulating the expression of caveolin‑1. International Journal of Oncology, 54, 2054-2068. https://doi.org/10.3892/ijo.2019.4774
MLA
Gao, Y., Li, L., Li, T., Ma, L., Yuan, M., Sun, W., Cheng, H. L., Niu, L., Du, Z., Quan, Z., Fan, Y., Fan, J., Luo, C., Wu, X."Simvastatin delays castration‑resistant prostate cancer metastasis and androgen receptor antagonist resistance by regulating the expression of caveolin‑1". International Journal of Oncology 54.6 (2019): 2054-2068.
Chicago
Gao, Y., Li, L., Li, T., Ma, L., Yuan, M., Sun, W., Cheng, H. L., Niu, L., Du, Z., Quan, Z., Fan, Y., Fan, J., Luo, C., Wu, X."Simvastatin delays castration‑resistant prostate cancer metastasis and androgen receptor antagonist resistance by regulating the expression of caveolin‑1". International Journal of Oncology 54, no. 6 (2019): 2054-2068. https://doi.org/10.3892/ijo.2019.4774