Open Access

Myristoylated alanine-rich C-kinase substrate effector domain phosphorylation regulates the growth and radiation sensitization of glioblastoma

  • Authors:
    • Nicholas J. Eustace
    • Joshua C. Anderson
    • Catherine P. Langford
    • Hoa Q. Trummell
    • Patricia H. Hicks
    • John S. Jarboe
    • James A. Mobley
    • Anita B. Hjelmeland
    • James R. Hackney
    • Rune T. Pedersen
    • Kadia Cosby
    • G. Yancey Gillespie
    • James A. Bonner
    • Christopher D. Willey
  • View Affiliations

  • Published online on: March 29, 2019     https://doi.org/10.3892/ijo.2019.4766
  • Pages: 2039-2053
  • Copyright: © Eustace et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Glioblastoma harbors frequent alterations in receptor tyrosine kinases, phosphatidylinositol‑3 kinase (PI3K) and phosphatase and tensin homolog (PTEN) that dysregulate phospholipid signaling driven tumor proliferation and therapeutic resistance. Myristoylated alanine‑rich C‑kinase substrate (MARCKS) is a 32 kDa intrinsically unstructured protein containing a polybasic (+13) effector domain (ED), which regulates its electrostatic sequestration of phospholipid phosphatidylinositol (4,5)‑bisphosphate (PIP2), and its binding to phosphatidylserine, calcium/calmodulin, filamentous actin, while also serving as a nuclear localization sequence. MARCKS ED is phosphorylated by protein kinase C (PKC) and Rho‑associated protein kinase (ROCK) kinases; however, the impact of MARCKS on glioblastoma growth and radiation sensitivity remains undetermined. In the present study, using a tetracycline‑inducible system in PTEN‑null U87 cells, we demonstrate that MARCKS overexpression suppresses growth and enhances radiation sensitivity in vivo. A new image cytometer, Xcyto10, was utilized to quantify differences in MARCKS ED phosphorylation on localization and its association with filamentous actin. The overexpression of the non‑phosphorylatable ED mutant exerted growth‑suppressive and radiation‑sensitizing effects, while the pseudo‑phosphorylated ED mutant exhibited an enhanced colony formation and clonogenic survival ability. The identification of MARCKS protein‑protein interactions using co‑immunoprecipitation coupled with tandem mass spectrometry revealed novel MARCKS‑associated proteins, including importin‑β and ku70. On the whole, the findings of this study suggest that the determination of the MARCKS ED phosphorylation status is essential to understanding the impact of MARCKS on cancer progression.

References

1 

Li YM, Suki D, Hess K and Sawaya R: The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection? J Neurosurg. 124:977–988. 2016. View Article : Google Scholar

2 

Johnson DR and O’Neill BP: Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol. 107:359–364. 2012. View Article : Google Scholar

3 

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Mao H, Lebrun DG, Yang J, Zhu VF and Li M: Deregulated signaling pathways in glioblastoma multiforme: Molecular mechanisms and therapeutic targets. Cancer Invest. 30:48–56. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y, Radenbaugh A, Pagnotta SM, et al: TCGA Research Network: Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell. 164:550–563. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Li X, Wu C, Chen N, Gu H, Yen A, Cao L, Wang E and Wang L: PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget. 7:33440–33450. 2016.PubMed/NCBI

7 

Jhanwar-Uniyal M, Amin AG, Cooper JB, Das K, Schmidt MH and Murali R: Discrete signaling mechanisms of mTORC1 and mTORC2: Connected yet apart in cellular and molecular aspects. Adv Biol Regul. 64:39–48. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Denley A, Gymnopoulos M, Kang S, Mitchell C and Vogt PK: Requirement of phosphatidylinositol(3,4,5)trisphosphate in phosphatidylinositol 3-kinase-induced oncogenic transformation. Mol Cancer Res. 7:1132–1138. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Ramos AR, Elong Edimo W and Erneux C: Phosphoinositide 5-phosphatase activities control cell motility in glioblastoma: Two phosphoinositides PI(4,5)P2 and PI(3,4)P2 are involved. Adv Biol Regul. 67:40–48. 2018. View Article : Google Scholar

10 

Fong LWR, Yang DC and Chen CH: Myristoylated alanine-rich C kinase substrate (MARCKS): A multirole signaling protein in cancers. Cancer Metastasis Rev. 36:737–747. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Guan Y, Zhu Q, Huang D, Zhao S, Jan Lo L and Peng J: An equation to estimate the difference between theoretically predicted and SDS PAGE-displayed molecular weights for an acidic peptide. Sci Rep. 5:133702015. View Article : Google Scholar : PubMed/NCBI

12 

Ramsden JJ: MARCKS: A case of molecular exaptation. Int J Biochem Cell Biol. 32:475–479. 2000. View Article : Google Scholar : PubMed/NCBI

13 

Arbuzova A, Schmitz AA and Vergères G: Cross-talk unfolded: MARCKS proteins. Biochem J. 362:1–12. 2002. View Article : Google Scholar : PubMed/NCBI

14 

Brudvig JJ and Weimer JM: X MARCKS the spot: Myristoylated alanine-rich C kinase substrate in neuronal function and disease. Front Cell Neurosci. 9:4072015. View Article : Google Scholar : PubMed/NCBI

15 

Tapp H, Al-Naggar IM, Yarmola EG, Harrison A, Shaw G, Edison AS and Bubb MR: MARCKS is a natively unfolded protein with an inaccessible actin-binding site: Evidence for long-range intramolecular interactions. J Biol Chem. 280:9946–9956. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Arbuzova A, Wang J, Murray D, Jacob J, Cafiso DS and McLaughlin S: Kinetics of interaction of the myristoylated alanine-rich C kinase substrate, membranes, and calmodulin. J Biol Chem. 272:27167–27177. 1997. View Article : Google Scholar : PubMed/NCBI

17 

Hartwig JH, Thelen M, Rosen A, Janmey PA, Nairn AC and Aderem A: MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature. 356:618–622. 1992. View Article : Google Scholar : PubMed/NCBI

18 

Yarmola EG, Edison AS, Lenox RH and Bubb MR: Actin filament cross-linking by MARCKS: Characterization of two actin-binding sites within the phosphorylation site domain. J Biol Chem. 276:22351–22358. 2001. View Article : Google Scholar : PubMed/NCBI

19 

Wang J, Arbuzova A, Hangyás-Mihályné G and McLaughlin S: The effector domain of myristoylated alanine-rich C kinase substrate binds strongly to phosphatidylinositol 4,5-bispho-sphate. J Biol Chem. 276:5012–5019. 2001. View Article : Google Scholar

20 

Zhang W, Crocker E, McLaughlin S and Smith SO: Binding of peptides with basic and aromatic residues to bilayer membranes: Phenylalanine in the myristoylated alanine-rich C kinase substrate effector domain penetrates into the hydrophobic core of the bilayer. J Biol Chem. 278:21459–21466. 2003. View Article : Google Scholar : PubMed/NCBI

21 

Thelen M, Rosen A, Nairn AC and Aderem A: Regulation by phosphorylation of reversible association of a myristoylated protein kinase C substrate with the plasma membrane. Nature. 351:320–322. 1991. View Article : Google Scholar : PubMed/NCBI

22 

Tanabe A, Kamisuki Y, Hidaka H, Suzuki M, Negishi M and Takuwa Y: PKC phosphorylates MARCKS Ser159 not only directly but also through RhoA/ROCK. Biochem Biophys Res Commun. 345:156–161. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Denisov G, Wanaski S, Luan P, Glaser M and McLaughlin S: Binding of basic peptides to membranes produces lateral domains enriched in the acidic lipids phosphatidylserine and phosphatidylinositol 4,5-bisphosphate: An electrostatic model and experimental results. Biophys J. 74:731–744. 1998. View Article : Google Scholar : PubMed/NCBI

24 

Nakaoka T, Kojima N, Ogita T and Tsuji S: Characterization of the phosphatidylserine-binding region of rat MARCKS (myristoylated, alanine-rich protein kinase C substrate). Its regulation through phosphorylation of serine 152. J Biol Chem. 270:12147–12151. 1995. View Article : Google Scholar : PubMed/NCBI

25 

Rohrbach TD, Shah N, Jackson WP, Feeney EV, Scanlon S, Gish R, Khodadadi R, Hyde SO, Hicks PH, Anderson JC, et al: The effector domain of MARCKS is a nuclear localization signal that regulates cellular PIP2 levels and nuclear PIP2 localization. PLoS One. 10:e01408702015. View Article : Google Scholar : PubMed/NCBI

26 

Bickeböller M, Tagscherer KE, Kloor M, Jansen L, Chang-Claude J, Brenner H, Hoffmeister M, Toth C, Schirmacher P, Roth W, et al: Functional characterization of the tumor-suppressor MARCKS in colorectal cancer and its association with survival. Oncogene. 34:1150–1159. 2015. View Article : Google Scholar

27 

Brooks G, Brooks SF and Goss MW: MARCKS functions as a novel growth suppressor in cells of melanocyte origin. Carcinogenesis. 17:683–689. 1996. View Article : Google Scholar : PubMed/NCBI

28 

Hanada S, Kakehashi A, Nishiyama N, Wei M, Yamano S, Chung K, Komatsu H, Inoue H, Suehiro S and Wanibuchi H: Myristoylated alanine-rich C-kinase substrate as a prognostic biomarker in human primary lung squamous cell carcinoma. Cancer Biomark. 13:289–298. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Manenti S, Malecaze F, Chap H and Darbon JM: Overexpression of the myristoylated alanine-rich C kinase substrate in human choroidal melanoma cells affects cell proliferation. Cancer Res. 58:1429–1434. 1998.PubMed/NCBI

30 

Chen CH, Cheng CT, Yuan Y, Zhai J, Arif M, Fong LW, Wu R and Ann DK: Elevated MARCKS phosphorylation contributes to unresponsiveness of breast cancer to paclitaxel treatment. Oncotarget. 6:15194–15208. 2015.PubMed/NCBI

31 

Chen CH, Fong LWR, Yu E, Wu R, Trott JF and Weiss RH: Upregulation of MARCKS in kidney cancer and its potential as a therapeutic target. Oncogene. 36:3588–3598. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Micallef J, Taccone M, Mukherjee J, Croul S, Busby J, Moran MF and Guha A: Epidermal growth factor receptor variant III-induced glioma invasion is mediated through myristoylated alanine-rich protein kinase C substrate overexpression. Cancer Res. 69:7548–7556. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Jarboe JS, Anderson JC, Duarte CW, Mehta T, Nowsheen S, Hicks PH, Whitley AC, Rohrbach TD, McCubrey RO, Chiu S, et al: MARCKS regulates growth and radiation sensitivity and is a novel prognostic factor for glioma. Clin Cancer Res. 18:3030–3041. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al: The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2:401–404. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Rohrbach TD, Jones RB, Hicks PH, Weaver AN, Cooper TS, Eustace NJ, Yang ES, Jarboe JS, Anderson JC and Willey CD: MARCKS phosphorylation is modulated by a peptide mimetic of MARCKS effector domain leading to increased radiation sensitivity in lung cancer cell lines. Oncol Lett. 13:1216–1222. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Bradley JD, Kataoka Y, Advani S, Chung SM, Arani RB, Gillespie GY, Whitley RJ, Markert JM, Roizman B and Weichselbaum RR: Ionizing radiation improves survival in mice bearing intracranial high-grade gliomas injected with genetically modified herpes simplex virus. Clin Cancer Res. 5:1517–1522. 1999.PubMed/NCBI

37 

Arbuzova A, Murray D and McLaughlin S: MARCKS, membranes, and calmodulin: Kinetics of their interaction. Biochim Biophys Acta. 1376:369–379. 1998. View Article : Google Scholar : PubMed/NCBI

38 

Cameron AJ, Procyk KJ, Leitges M and Parker PJ: PKC alpha protein but not kinase activity is critical for glioma cell proliferation and survival. Int J Cancer. 123:769–779. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Li HF, Kim JS and Waldman T: Radiation-induced Akt activation modulates radioresistance in human glioblastoma cells. Radiat Oncol. 4:432009. View Article : Google Scholar : PubMed/NCBI

40 

Rohrbach TD, Jarboe JS, Anderson JC, Trummell HQ, Hicks PH, Weaver AN, Yang ES, Oster RA, Deshane JS, Steele C, et al: Targeting the effector domain of the myristoylated alanine rich C-kinase substrate enhances lung cancer radiation sensitivity. Int J Oncol. 46:1079–1088. 2015. View Article : Google Scholar

41 

Naidu MD, Mason JM, Pica RV, Fung H and Peña LA: Radiation resistance in glioma cells determined by DNA damage repair activity of Ape1/Ref-1. J Radiat Res (Tokyo). 51:393–404. 2010. View Article : Google Scholar

42 

Moon SH, Kim DK, Cha Y, Jeon I, Song J and Park KS: PI3K/Akt and Stat3 signaling regulated by PTEN control of the cancer stem cell population, proliferation and senescence in a glioblastoma cell line. Int J Oncol. 42:921–928. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Peltier J, O’Neill A and Schaffer DV: PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol. 67:1348–1361. 2007. View Article : Google Scholar : PubMed/NCBI

44 

Golding SE, Morgan RN, Adams BR, Hawkins AJ, Povirk LF and Valerie K: Pro-survival AKT and ERK signaling from EGFR and mutant EGFRvIII enhances DNA double-strand break repair in human glioma cells. Cancer Biol Ther. 8:730–738. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Toulany M, Lee KJ, Fattah KR, Lin YF, Fehrenbacher B, Schaller M, Chen BP, Chen DJ and Rodemann HP: Akt promotes post-irradiation survival of human tumor cells through initiation, progression, and termination of DNA-PKcs-dependent DNA double-strand break repair. Mol Cancer Res. 10:945–957. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Toulany M and Rodemann HP: Phosphatidylinositol 3-kinase/Akt signaling as a key mediator of tumor cell responsiveness to radiation. Semin Cancer Biol. 35:180–190. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Fan QW and Weiss WA: Inhibition of PI3K-Akt-mTOR signaling in glioblastoma by mTORC1/2 inhibitors. Methods Mol Biol. 821:349–359. 2012. View Article : Google Scholar :

48 

Westhoff MA, Karpel-Massler G, Brühl O, Enzenmüller S, La Ferla-Brühl K, Siegelin MD, Nonnenmacher L and Debatin KM: A critical evaluation of PI3K inhibition in Glioblastoma and Neuroblastoma therapy. Mol Cell Ther. 2:322014. View Article : Google Scholar : PubMed/NCBI

49 

Opel D, Westhoff MA, Bender A, Braun V, Debatin KM and Fulda S: Phosphatidylinositol 3-kinase inhibition broadly sensitizes glioblastoma cells to death receptor- and drug-induced apoptosis. Cancer Res. 68:6271–6280. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Trovò L, Ahmed T, Callaerts-Vegh Z, Buzzi A, Bagni C, Chuah M, Vandendriessche T, D’Hooge R, Balschun D and Dotti CG: Low hippocampal PI(4,5)P(2) contributes to reduced cognition in old mice as a result of loss of MARCKS. Nat Neurosci. 16:449–455. 2013. View Article : Google Scholar

51 

Wang J, Gambhir A, Hangyás-Mihályné G, Murray D, Golebiewska U and McLaughlin S: Lateral sequestration of phos-phatidylinositol 4,5-bisphosphate by the basic effector domain of myristoylated alanine-rich C kinase substrate is due to nonspecific electrostatic interactions. J Biol Chem. 277:34401–34412. 2002. View Article : Google Scholar : PubMed/NCBI

52 

Glaser M, Wanaski S, Buser CA, Boguslavsky V, Rashidzada W, Morris A, Rebecchi M, Scarlata SF, Runnels LW, Prestwich GD, et al: Myristoylated alanine-rich C kinase substrate (MARCKS) produces reversible inhibition of phospho-lipase C by sequestering phosphatidylinositol 4,5-bisphosphate in lateral domains. J Biol Chem. 271:26187–26193. 1996. View Article : Google Scholar : PubMed/NCBI

53 

Vadlakonda L, Pasupuleti M and Pallu R: Role of PI3K-AKT-mTOR and Wnt Signaling Pathways in Transition of G1-S Phase of Cell Cycle in Cancer Cells. Front Oncol. 3:852013. View Article : Google Scholar : PubMed/NCBI

54 

Jarboe JS, Anderson JC, Duarte CW, Mehta T, Nowsheen S, Hicks PH, Whitley AC, Rohrbach TD, McCubrey RO, Chiu S, et al: MARCKS regulates growth and radiation sensitivity and is a novel prognostic factor for glioma. Clin Cancer Res. 18:3030–3041. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Masaki T, Tokuda M, Yoshida S, Nakai S, Morishita A, Uchida N, Funaki T, Kita Y, Funakoshi F, Nonomura T, et al: Comparison study of the expressions of myristoylated alanine-rich C kinase substrate in hepatocellular carcinoma, liver cirrhosis, chronic hepatitis, and normal liver. Int J Oncol. 26:661–671. 2005.PubMed/NCBI

56 

Chen CH, Statt S, Chiu CL, Thai P, Arif M, Adler KB and Wu R: Targeting myristoylated alanine-rich C kinase substrate phosphor-ylation site domain in lung cancer. Mechanisms and therapeutic implications. Am J Respir Crit Care Med. 190:1127–1138. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Li H, Chen G, Zhou B and Duan S: Actin filament assembly by myristoylated alanine-rich C kinase substrate-phosphati-dylinositol-4,5-diphosphate signaling is critical for dendrite branching. Mol Biol Cell. 19:4804–4813. 2008. View Article : Google Scholar : PubMed/NCBI

58 

Nairn AC and Aderem A: Calmodulin and protein kinase C cross-talk: The MARCKS protein is an actin filament and plasma membrane cross-linking protein regulated by protein kinase C phosphorylation and by calmodulin. Ciba Found Symp. 164:145–161. 1992.PubMed/NCBI

59 

Sundaram M, Cook HW and Byers DM: The MARCKS family of phospholipid binding proteins: Regulation of phospholipase D and other cellular components. Biochem Cell Biol. 82:191–200. 2004. View Article : Google Scholar : PubMed/NCBI

60 

Adan A, Kiraz Y and Baran Y: Cell proliferation and cytotoxicity sssays. Curr Pharm Biotechnol. 17:1213–1221. 2016. View Article : Google Scholar

61 

Posimo JM, Unnithan AS, Gleixner AM, Choi HJ, Jiang Y, Pulugulla SH and Leak RK: Viability assays for cells in culture. J Vis Exp. 83:506452014.

62 

Yu D, Makkar G, Dong T, Strickland DK, Sarkar R and Monahan TS: MARCKS signaling differentially regulates vascular smooth muscle and endothelial cell proliferation through a KIS-, p27kip1-dependent mechanism. PLoS One. 10:e01413972015. View Article : Google Scholar

63 

Franken NA, Rodermond HM, Stap J, Haveman J and van Bree C: Clonogenic assay of cells in vitro. Nat Protoc. 1:2315–2319. 2006. View Article : Google Scholar

64 

Borràs M, Armengol G, De Cabo M, Barquinero JF and Barrios L: Comparison of methods to quantify histone H2AX phosphorylation and its usefulness for prediction of radiosensi-tivity. Int J Radiat Biol. 91:915–924. 2015. View Article : Google Scholar

65 

Thinon E, Serwa RA, Broncel M, Brannigan JA, Brassat U, Wright MH, Heal WP, Wilkinson AJ, Mann DJ and Tate EW: Global profiling of co- and post-translationally N-myristoylated proteomes in human cells. Nat Commun. 5:49192014. View Article : Google Scholar : PubMed/NCBI

66 

Ridley AJ: Rho GTPases and cell migration. J Cell Sci. 114:2713–2722. 2001.PubMed/NCBI

67 

Lott K and Cingolani G: The importin β binding domain as a master regulator of nucleocytoplasmic transport. Biochim Biophys Acta. 1813:1578–1592. 2011. View Article : Google Scholar

68 

Vargova J, Vargova K, Dusilkova N, Kulvait V, Pospisil V, Zavadil J, Trneny M, Klener P and Stopka T: Differential expression, localization and activity of MARCKS between mantle cell lymphoma and chronic lymphocytic leukemia. Blood Cancer J. 6:e4752016. View Article : Google Scholar : PubMed/NCBI

69 

Herhaus L, Perez-Oliva AB, Cozza G, Gourlay R, Weidlich S, Campbell DG, Pinna LA and Sapkota GP: Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at Ser16 to trigger its nuclear localization. Sci Signal. 8:ra352015. View Article : Google Scholar : PubMed/NCBI

70 

Gao Y and Wang HY: Casein kinase 2 Is activated and essential for Wnt/beta-catenin signaling. J Biol Chem. 281:18394–18400. 2006. View Article : Google Scholar : PubMed/NCBI

71 

Tu X, Joeng KS, Nakayama KI, Nakayama K, Rajagopal J, Carroll TJ, McMahon AP and Long F: Noncanonical Wnt signaling through G protein-linked PKCdelta activation promotes bone formation. Dev Cell. 12:113–127. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Jin BY, Lin AJ, Golan DE and Michel T: MARCKS protein mediates hydrogen peroxide regulation of endothelial permeability. Proc Natl Acad Sci USA. 109:14864–14869. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Chen WC, McBride WH, Iwamoto KS, Barber CL, Wang CC, Oh YT, Liao YP, Hong JH, de Vellis J and Shau H: Induction of radioprotective peroxiredoxin-I by ionizing irradiation. J Neurosci Res. 70:794–798. 2002. View Article : Google Scholar : PubMed/NCBI

74 

Mesiwala AH, Farrell L, Santiago P, Ghatan S and Silbergeld DL: The effects of hydrogen peroxide on brain and brain tumors. Surg Neurol. 59:398–407. 2003. View Article : Google Scholar : PubMed/NCBI

75 

Xu XH, Deng CY, Liu Y, He M, Peng J, Wang T, Yuan L, Zheng ZS, Blackshear PJ and Luo ZG: MARCKS regulates membrane targeting of Rab10 vesicles to promote axon development. Cell Res. 24:576–594. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Yu D, Makkar G, Strickland DK, Blanpied TA, Stumpo DJ, Blackshear PJ, Sarkar R and Monahan TS: Myristoylated alanine-rich protein kinase substrate (MARCKS) regulates small GTPase Rac1 and Cdc42 activity and is a critical mediator of vascular smooth muscle cell migration inintimal hyperplasia formation. J Am Heart Assoc. 4:e0022552015. View Article : Google Scholar

77 

Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, et al: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 344:1396–1401. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 54 Issue 6

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Eustace, N.J., Anderson, J.C., Langford, C.P., Trummell, H.Q., Hicks, P.H., Jarboe, J.S. ... Willey, C.D. (2019). Myristoylated alanine-rich C-kinase substrate effector domain phosphorylation regulates the growth and radiation sensitization of glioblastoma. International Journal of Oncology, 54, 2039-2053. https://doi.org/10.3892/ijo.2019.4766
MLA
Eustace, N. J., Anderson, J. C., Langford, C. P., Trummell, H. Q., Hicks, P. H., Jarboe, J. S., Mobley, J. A., Hjelmeland, A. B., Hackney, J. R., Pedersen, R. T., Cosby, K., Gillespie, G. Y., Bonner, J. A., Willey, C. D."Myristoylated alanine-rich C-kinase substrate effector domain phosphorylation regulates the growth and radiation sensitization of glioblastoma". International Journal of Oncology 54.6 (2019): 2039-2053.
Chicago
Eustace, N. J., Anderson, J. C., Langford, C. P., Trummell, H. Q., Hicks, P. H., Jarboe, J. S., Mobley, J. A., Hjelmeland, A. B., Hackney, J. R., Pedersen, R. T., Cosby, K., Gillespie, G. Y., Bonner, J. A., Willey, C. D."Myristoylated alanine-rich C-kinase substrate effector domain phosphorylation regulates the growth and radiation sensitization of glioblastoma". International Journal of Oncology 54, no. 6 (2019): 2039-2053. https://doi.org/10.3892/ijo.2019.4766