Open Access

TGF-β-induced long non-coding RNA MIR155HG promotes the progression and EMT of laryngeal squamous cell carcinoma by regulating the miR-155-5p/SOX10 axis

  • Authors:
    • Weina Cui
    • Wenxia Meng
    • Lei Zhao
    • Huan Cao
    • Weiwei Chi
    • Baoshan Wang
  • View Affiliations

  • Published online on: April 12, 2019     https://doi.org/10.3892/ijo.2019.4784
  • Pages: 2005-2018
  • Copyright: © Cui et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Non‑coding RNAs, particularly long non‑coding RNAs (lncRNAs), play important roles in tumorigenesis. The miR‑155 host gene (MIR155HG) lncRNA has been found to play a crucial role in tumor progression. However, the role of MIR155HG in laryngeal squamous cell carcinoma (LSCC) remains unclear. Thus, the aim of the present study was to explore the roles and underlying molecular mechanisms of action of MIR155HG and miR‑155‑5p in LSCC, in an effort to provide novel approaches for the antitumor therapy for LSCC. In the present study, the expression levels of miR‑155‑5p and MIR155HG were detected by reverse tran­scription‑quantitative polymerase chain reaction. In addition, the biological functions of MIR155HG and miR‑155‑5p on LSCC were evaluated in vitro by MTS assay, colony formation assay and Transwell assays, and in vivo by tumorigenesis assays. It was revealed that MIR155HG and miR‑155‑5p were significantly upregulated in LSCC tissues, and were associated with the TNM stage, pathological differentiation and lymph node metastasis. Moreover, the knockdown of MIR155HG and miR‑155‑5p inhibited the proliferation, migration and invasion of LSCC cells, whereas their overexpression exerted the opposite effects in vitro and MIR155HG overexpression promoted tumorigenesis in vivo. Furthermore, MIR155HG downregulation reduced the expression level of miR‑155‑5p. The inhibitory effect of MIR155HG knockdown on malignant behavior was abrogated by miR‑155‑5p overexpression. Bioinformatics analysis and luciferase reporter assay confirmed that miR‑155‑5p contributed to the progression of LSCC by directly binding to the 3' untranslated region of SRY‑related‑HMG‑box 10 (SOX10). In addition, MIR155HG and miR‑155‑5p were upregulated by the induction of transforming growth factor‑β (TGF‑β) and promoted the expression of mesenchymal markers synergistically. On the whole, the findings of the present study indicate a novel role of MIR155HG in the TGF‑β‑induced EMT of LSCC cells by regulating EMT markers through the miR‑155/SOX10 axis. The MIR155HG/miR‑155‑5p/SOX10 axis plays an important role in promoting the progression of LSCC and may thus serve as a potential therapeutic target for LSCC treatment.

References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Yu Q, Zhang X, Ji C, Yang H, Gao M, Hong S and Hu G: Survival analysis of laryngeal carcinoma without laryngectomy, radiotherapy, or chemotherapy. Eur Arch Otorhinolaryngol. 269:2103–2109. 2012. View Article : Google Scholar

3 

Groome PA, O’Sullivan B, Irish JC, Rothwell DM, Schulze K, Warde PR, Schneider KM, Mackenzie RG, Hodson DI, Hammond JA, et al: Management and outcome differences in supraglottic cancer between Ontario, Canada, and the Surveillance, Epidemiology, and End Results areas of the United States. J Clin Oncol. 21:496–505. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Kaikkonen MU and Adelman K: Emerging roles of non-coding RNA transcription. Trends Biochem Sci. 43:654–667. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, et al: Landscape of transcription in human cells. Nature. 489:101–108. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Wang KC and Chang HY: Molecular mechanisms of long noncoding RNAs. Mol Cell. 43:904–914. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Mou K, Liu B, Ding M, Mu X, Han D, Zhou Y and Wang LJ: lncRNA-ATB functions as a competing endogenous RNA to promote YAP1 by sponging miR-590-5p in malignant melanoma. Int J Oncol. 53:1094–1104. 2018.PubMed/NCBI

8 

Li X, Zhao X, Yang B, Li Y, Liu T, Pang L, Fan Z, Ma W, Liu Z and Li Z: Long non-coding RNA HOXD-AS1 promotes tumor progression and predicts poor prognosis in colorectal cancer. Int J Oncol. 53:21–32. 2018.PubMed/NCBI

9 

Qu Wu T, He L, Tian G, Li L, Zhou L, Jin H, Ren Q, Wang J, Wang YJ, et al: Regulation of laryngeal squamous cell cancer progression by the lncRNA H19/miR-148a-3p/DNMT1 axis. Oncotarget. 7:11553–11566. 2016.PubMed/NCBI

10 

Zheng J, Xiao X, Wu C, Huang J, Zhang Y, Xie M, Zhang M and Zhou L: The role of long non-coding RNA HOTAIR in the progression and development of laryngeal squamous cell carcinoma interacting with EZH2. Acta Otolaryngol. 137:90–98. 2017. View Article : Google Scholar

11 

Li D, Feng J, Wu T, Wang Y, Sun Y, Ren J and Liu M: Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. Am J Pathol. 182:64–70. 2013. View Article : Google Scholar

12 

Wang P, Wu T, Zhou H, Jin Q, He G, Yu H, Xuan L, Wang X, Tian L, Sun Y, et al: Long noncoding RNA NEAT1 promotes laryngeal squamous cell cancer through regulating miR-107/CDK6 pathway. J Exp Clin Cancer Res. 35:222016. View Article : Google Scholar : PubMed/NCBI

13 

Zhang Z, Wang X, Cao S, Han X, Wang Z, Zhao X, Liu X, Li G, Pan X and Lei D: The long noncoding RNA TUG1 promotes laryngeal cancer proliferation and migration. Cell Physiol Biochem. 49:2511–2520. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Dhir A, Dhir S, Proudfoot NJ and Jopling CL: Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nat Struct Mol Biol. 22:319–327. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Zhao Lu Y, Liu X, Li Q, Graves-Deal C, Cao R, Singh Z, Franklin B, Wang JL, Hu JH, et al: lncRNA MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via Wnt/beta-catenin signaling. Nat Med. 23:1331–1341. 2017. View Article : Google Scholar

16 

Cai P, Li H, Huo W, Zhu H, Xu C, Zang R, Lv W, Xia Y and Tang W: Aberrant expression of LncRNA-MIR31HG regulates cell migration and proliferation by affecting miR-31 and miR-31* in Hirschsprung’s disease. J Cell Biochem. 119:8195–8203. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Wang Wu X, Yu Y, Nie T, Hu E, Wu Q, Zhi W, Jiang T, Wang K, Lu XX, et al: Blocking MIR155HG/miR-155 axis inhibits mesenchymal transition in glioma. Neuro Oncol. 19:1195–1205. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Miyazono K, Ehata S and Koinuma D: Tumor-promoting functions of transforming growth factor-β in progression of cancer. Ups J Med Sci. 117:143–152. 2012. View Article : Google Scholar :

19 

Tian L, Li M, Ge J, Guo Y, Sun Y, Liu M and Xiao H: MiR-203 is downregulated in laryngeal squamous cell carcinoma and can suppress proliferation and induce apoptosis of tumours. Tumour Biol. 35:5953–5963. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Wang B, Lv K, Chen W, Zhao J, Luo J, Wu J, Li Z, Qin H, Wong TS, Yang W, et al: miR-375 and miR-205 regulate the invasion and migration of laryngeal squamous cell carcinoma synergistically via AKT-mediated EMT. Biomed Res Int. 2016:96527892016. View Article : Google Scholar

21 

Luo H, Jiang Y, Ma S, Chang H, Yi C, Cao H, Gao Y, Guo H, Hou J, Yan J, et al: EZH2 promotes invasion and metastasis of laryngeal squamous cells carcinoma via epithelial-mesen-chymal transition through H3K27me3. Biochem Biophys Res Commun. 479:253–259. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Tong X, Li L, Li X, Heng L, Zhong L, Su X, Rong R, Hu S, Liu W, Jia B, et al: SOX10, a novel HMG-box-containing tumor suppressor, inhibits growth and metastasis of digestive cancers by suppressing the Wnt/β-catenin pathway. Oncotarget. 5:10571–10583. 2014. View Article : Google Scholar : PubMed/NCBI

23 

He P and Jin X: SOX10 induces epithelial-mesenchymal transition and contributes to nasopharyngeal carcinoma progression. Biochem Cell Biol. 96:326–331. 2018. View Article : Google Scholar

24 

Tam W, Ben-Yehuda D and Hayward WS: bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Mol Cell Biol. 17:1490–1502. 1997. View Article : Google Scholar : PubMed/NCBI

25 

Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ and van den Berg A: BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol. 207:243–249. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Metzler M, Wilda M, Busch K, Viehmann S and Borkhardt A: High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer. 39:167–169. 2004. View Article : Google Scholar

27 

van den Berg A, Kroesen BJ, Kooistra K, de Jong D, Briggs J, Blokzijl T, Jacobs S, Kluiver J, Diepstra A, Maggio E, et al: High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosomes Cancer. 37:20–28. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Thompson RC, Vardinogiannis I and Gilmore TD: Identification of an NF-κB p50/p65-responsive site in the human MIR155HG promoter. BMC Mol Biol. 14:242013. View Article : Google Scholar

29 

Vargova K, Curik N, Burda P, Basova P, Kulvait V, Pospisil V, Savvulidi F, Kokavec J, Necas E, Berkova A, et al: MYB transcriptionally regulates the miR-155 host gene in chronic lymphocytic leukemia. Blood. 117:3816–3825. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Elton TS, Selemon H, Elton SM and Parinandi NL: Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 532:1–12. 2013. View Article : Google Scholar

31 

Qu Y, Zhang H and Sun W: MicroRNA-155 promotes gastric cancer growth and invasion by negatively regulating transforming growth factor-beta receptor 2. 109:618–628. 2018.

32 

Liu J, Chen Z, Xiang J and Gu X: MicroRNA-155 acts as a tumor suppressor in colorectal cancer by targeting CTHRC1 in vitro. Oncol Lett. 15:5561–5568. 2018.PubMed/NCBI

33 

Lin J, Chen Y, Liu L, Shen A and Zheng W: MicroRNA-155-5p suppresses the migration and invasion of lung adenocarcinoma A549 cells by targeting Smad2. Oncol Lett. 16:2444–2452. 2018.PubMed/NCBI

34 

Baba O, Hasegawa S, Nagai H, Uchida F, Yamatoji M, Kanno NI, Yamagata K, Sakai S, Yanagawa T and Bukawa H: MicroRNA-155-5p is associated with oral squamous cell carcinoma metastasis and poor prognosis. J Oral Pathol Med. 45:248–55. 2016. View Article : Google Scholar

35 

Kim H, Yang JM, Ahn SH, Jeong WJ, Chung JH and Paik JH: Potential oncogenic role and prognostic implication of MicroRNA-155-5p in oral squamous cell carcinoma. Anticancer Res. 38:5193–5200. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Zhao X, Zhang W and Ji W: YB-1 promotes laryngeal squamous cell carcinoma progression by inducing miR-155 expression via c-Myb. Future Oncol. 14:1579–1589. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Zhao XD, Zhang W, Liang HJ and Ji WY: Overexpression of miR - 155 promotes proliferation and invasion of human laryngeal squamous cell carcinoma via targeting SOCS1 and STAT3. PLoS One. 8:e563952013. View Article : Google Scholar

38 

Wang JL, Wang X, Yang D and Shi WJ: The Expression of MicroRNA-155 in plasma and tissue is matched in human laryngeal squamous cell carcinoma. Yonsei Med J. 57:298–305. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Hong CS and Saint-Jeannet JP: Sox proteins and neural crest development. Semin Cell Dev Biol. 16:694–703. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Mokhtarzadeh Khanghahi A, Satarian L, Deng W, Baharvand H and Javan M: In vivo conversion of astrocytes into oligodendrocyte lineage cells with transcription factor Sox10; Promise for myelin repair in multiple sclerosis. PLoS One. 13:e02037852018. View Article : Google Scholar : PubMed/NCBI

41 

Zhao Y, Liu ZG, Tang J, Zou RF, Chen XY, Jiang GM, Qiu YF and Wang H: High expression of Sox10 correlates with tumor aggressiveness and poor prognosis in human nasopharyngeal carcinoma. OncoTargets Ther. 9:1671–1677. 2016. View Article : Google Scholar

42 

Zhou D, Bai F, Zhang X, Hu M, Zhao G, Zhao Z and Liu R: SOX10 is a novel oncogene in hepatocellular carcinoma through Wnt/β-catenin/TCF4 cascade. Tumour Biol. 35:9935–9940. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Polyak K and Weinberg RA: Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat Rev Cancer. 9:265–273. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, Liu F, Pan W, Wang TT, Zhou CC, et al: A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepato-cellular carcinoma. Cancer Cell. 25:666–681. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Lu Z, Li Y, Che Y, Huang J, Sun S, Mao S, Lei Y, Li N, Sun N and He J: The TGFβ-induced lncRNA TBILA promotes non-small cell lung cancer progression in vitro and in vivo via cis-regulating HGAL and activating S100A7/JAB1 signaling. Cancer Lett. 432:156–168. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Hao Y, Yang X, Zhang D, Luo J and Chen R: Long noncoding RNA LINC01186, regulated by TGF-β/SMAD3, inhibits migration and invasion through Epithelial-Mesenchymal-Transition in lung cancer. Gene. 608:1–12. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Johansson J, Berg T, Kurzejamska E, Pang MF, Tabor V, Jansson M, Roswall P, Pietras K, Sund M, Religa P, et al: MiR-155-mediated loss of C/EBPβ shifts the TGF-β response from growth inhibition to epithelial-mesenchymal transition, invasion and metastasis in breast cancer. Oncogene. 32:5614–5624. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Li DP, Fan J, Wu YJ, Xie YF, Zha JM and Zhou XM: MiR-155 up-regulated by TGF-β promotes epithelial-mesenchymal transition, invasion and metastasis of human hepatocellular carcinoma cells in vitro. Am J Transl Res. 9:2956–2965. 2017.

49 

Kong X, Liu F and Gao J: MiR-155 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells through the activation of PI3K/SGK3/β-catenin signaling pathways. Oncotarget. 7:66051–66060. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 54 Issue 6

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Cui, W., Meng, W., Zhao, L., Cao, H., Chi, W., & Wang, B. (2019). TGF-β-induced long non-coding RNA MIR155HG promotes the progression and EMT of laryngeal squamous cell carcinoma by regulating the miR-155-5p/SOX10 axis. International Journal of Oncology, 54, 2005-2018. https://doi.org/10.3892/ijo.2019.4784
MLA
Cui, W., Meng, W., Zhao, L., Cao, H., Chi, W., Wang, B."TGF-β-induced long non-coding RNA MIR155HG promotes the progression and EMT of laryngeal squamous cell carcinoma by regulating the miR-155-5p/SOX10 axis". International Journal of Oncology 54.6 (2019): 2005-2018.
Chicago
Cui, W., Meng, W., Zhao, L., Cao, H., Chi, W., Wang, B."TGF-β-induced long non-coding RNA MIR155HG promotes the progression and EMT of laryngeal squamous cell carcinoma by regulating the miR-155-5p/SOX10 axis". International Journal of Oncology 54, no. 6 (2019): 2005-2018. https://doi.org/10.3892/ijo.2019.4784