Open Access

Overexpressing miR‑335 inhibits DU145 cell proliferation by targeting early growth response 3 in prostate cancer

  • Authors:
    • Peng Zhang
    • Xiaojie Yang
    • Li Wang
    • Dong Zhang
    • Qidong Luo
    • Binxian Wang
  • View Affiliations

  • Published online on: April 9, 2019     https://doi.org/10.3892/ijo.2019.4778
  • Pages: 1981-1994
  • Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

MicroRNA‑335 (miR‑335) was reported to suppress cell proliferation in prostate cancer (PC), a common malignancy in males. The expression of early growth response 3 (EGR3) was determined to be elevated in human PC tissues; however, the possible effects and underlying mechanism of miR‑335 on PC remains unknown. In the present study, miR‑335 mimics and miR‑335 inhibitors were respectively transfected into DU145 cells. Stable silencing of EGR3 was observed in DU145 cells following transfection with small interfering RNA. We also used Cell Counting Kit‑8 and in vitro angiogenesis assays to determine the viability and revascularization potential of DU145 cells. The expression levels of EGR and caspase‑3 activity were analyzed by immunohistochemistry and immunocytochemistry, respectively. We predicted the target of miR‑335 by bioinformatics analysis and a dual‑luciferase reporter gene assay. Western blot and quantitative real‑time polymerase chain reaction analyses were performed to determine the protein and mRNA expression of molecules. miR‑335 expression was downregulated in PC tissues and cell lines. Overexpression of miR‑335 significantly reduced the viability and the formation of regenerative tubes of DU145 cells, and inhibited the expression of inflammatory factors. EGR3 was proposed as a possible target of miR‑335, and was negatively regulated by miR‑335. Silencing EGR3 suppressed the viability and angiogenesis of DU145 cells, and reduced the activity of caspase‑3 and inflammatory factor expression. miR‑335 inhibition along with EGR3 silencing EGR3 inhibited the cell proliferation. Furthermore, miR‑335 inhibited the formation of a PC solid tumor xenograft in vivo. Thus, miR‑335 may exert an antitumor effect on DU145 cells by regulating the expression of EGR3. The findings of the present study may provide insight into a novel therapeutic strategy for the treatment of prostatic carcinoma.

References

1 

Xiao W, Dai B, Zhu Y and Ye D: Norcantharidin induces autophagy-related prostate cancer cell death through Beclin-1 upregulation by miR-129-5p suppression. Tumour Biol. Dec 5–2015.Epub ahead of print.

2 

Siegel R, Naishadham D and Jemal A: Cancer statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Utomo NB, Mochtar CA and Umbas R: Primary hormonal treatment in localized and locally advanced prostate cancer: Effectiveness and survival predictive factors. Acta Med Indones. 44:10–15. 2012.PubMed/NCBI

4 

Dasgupta S, Srinidhi S and Vishwanatha JK: Oncogenic activation in prostate cancer progression and metastasis: Molecular insights and future challenges. J Carcinog. 11:42012. View Article : Google Scholar : PubMed/NCBI

5 

Fraser M, Berlin A, Bristow RG and van der Kwast T: Genomic, pathological, and clinical heterogeneity as drivers of person-alized medicine in prostate cancer. Urol Oncol. 33:85–94. 2015. View Article : Google Scholar

6 

Fabris L, Ceder Y, Chinnaiyan AM, Jenster GW, Sorensen KD, Tomlins S, Visakorpi T and Calin GA: The potential of microRNAs as prostate cancer biomarkers. Eur Urol. 70:312–322. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL and Visakorpi T: MicroRNA expression profiling in prostate cancer. Cancer Res. 67:6130–6135. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Srivastava A, Goldberger H, Dimtchev A, Ramalinga M, Chijioke J, Marian C, Oermann EK, Uhm S, Kim JS, Chen LN, et al: MicroRNA profiling in prostate cancer - the diagnostic potential of urinary miR-205 and miR-214. PLoS One. 8:e769942013. View Article : Google Scholar :

9 

Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M, Tepper CG, Evans CP, Kung HJ and deVere White RW: An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci USA. 104:19983–19988. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Hsu TI, Hsu CH, Lee KH, Lin JT, Chen CS, Chang KC, Su CY, Hsiao M and Lu PJ: MicroRNA-18a is elevated in prostate cancer and promotes tumorigenesis through suppressing STK4 in vitro and in vivo. Oncogenesis. 3:e992014. View Article : Google Scholar : PubMed/NCBI

11 

Wang L, Li B, Li L and Wang T: MicroRNA-497 suppresses proliferation and induces apoptosis in prostate cancer cells. Asian Pac J Cancer Prev. 14:3499–3502. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Nazarov PV, Reinsbach SE, Muller A, Nicot N, Philippidou D, Vallar L and Kreis S: Interplay of microRNAs, transcription factors and target genes: Linking dynamic expression changes to function. Nucleic Acids Res. 41:2817–2831. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Cellini F, Morganti AG, Genovesi D, Silvestris N and Valentini V: Role of microRNA in response to ionizing radiations: Evidences and potential impact on clinical practice for radiotherapy. Molecules. 19:5379–5401. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Luo LJ, Wang DD, Wang J, Yang F and Tang JH: Diverse roles of miR-335 in development and progression of cancers. Tumour Biol. 37:1–12. 2016. View Article : Google Scholar

15 

Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL and Massagué J: Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 451:147–152. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Wang F, Zheng Z, Guo J and Ding X: Correlation and quanti-tation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol Oncol. 119:586–593. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G and Ferlini C: Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol. 111:478–486. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Shu M, Zheng X, Wu S, Lu H, Leng T, Zhu W, Zhou Y, Ou Y, Lin X, Lin Y, et al: Targeting oncogenic miR-335 inhibits growth and invasion of malignant astrocytoma cells. Mol Cancer. 10:592011. View Article : Google Scholar : PubMed/NCBI

19 

Dohi O, Yasui K, Gen Y, Takada H, Endo M, Tsuji K, Konishi C, Yamada N, Mitsuyoshi H, Yagi N, et al: Epigenetic silencing of miR-335 and its host gene MEST in hepatocellular carcinoma. Int J Oncol. 42:411–418. 2013. View Article : Google Scholar :

20 

Shi L, Jiang D, Sun G, Wan Y, Zhang S, Zeng Y, Pan T and Wang Z: miR-335 promotes cell proliferation by directly targeting Rb1 in meningiomas. J Neurooncol. 110:155–162. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Fu Q, Liu X, Liu Y, Yang J, Lv G and Dong S: MicroRNA-335 and -543 suppress bone metastasis in prostate cancer via targeting endothelial nitric oxide synthase. Int J Mol Med. 36:1417–1425. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Sun Z, Zhang Z, Liu Z, Qiu B and Liu K: MicroRNA-335 inhibits invasion and metastasis of colorectal cancer by targeting ZEB2. Med Oncol. 31:9822014. View Article : Google Scholar : PubMed/NCBI

23 

Heyn H, Engelmann M, Schreek S, Ahrens P, Lehmann U, Kreipe H, Schlegelberger B and Beger C: MicroRNA miR-335 is crucial for the BRCA1 regulatory cascade in breast cancer development. Int J Cancer. 129:2797–2806. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Gao Y, Zeng F, Wu JY, Li HY, Fan JJ, Mai L, Zhang J, Ma DM, Li Y and Song FZ: miR-335 inhibits migration of breast cancer cells through targeting oncoprotein c-Met. Tumour Biol. 36:2875–2883. 2015. View Article : Google Scholar

25 

Zhang S, Xia C, Xu C, Liu J, Zhu H, Yang Y, Xu F, Zhao J, Chang Y and Zhao Q: Early growth response 3 inhibits growth of hepatocellular carcinoma cells via upregulation of Fas ligand. Int J Oncol. 50:805–814. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Bhattacharyya S, Fang F, Tourtellotte W and Varga J: Egr-1: New conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). J Pathol. 229:286–297. 2013. View Article : Google Scholar

27 

Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, Dawson KJ, Iorio F, Nik-Zainal S, Bignell GR, et al: Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 5:29972014. View Article : Google Scholar : PubMed/NCBI

28 

Boone DN, Qi Y, Li Z and Hann SR: Egr1 mediates p53-independent c-Myc-induced apoptosis via a noncanonical ARF-dependent transcriptional mechanism. Proc Natl Acad Sci USA. 108:632–637. 2011. View Article : Google Scholar

29 

Wirth M, Stojanovic N, Christian J, Paul MC, Stauber RH, Schmid RM, Häcker G, Krämer OH, Saur D and Schneider G: MYC and EGR1 synergize to trigger tumor cell death by controlling NOXA and BIM transcription upon treatment with the proteasome inhibitor bortezomib. Nucleic Acids Res. 42:10433–10447. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Salotti J, Sakchaisri K, Tourtellotte WG and Johnson PF: An Arf-Egr-C/EBPβ pathway linked to ras-induced senescence and cancer. Mol Cell Biol. 35:866–883. 2015. View Article : Google Scholar :

31 

Pio R, Jia Z and Baron VT: Early growth response 3 (Egr3) is highly over-expressed in non-relapsing prostate cancer but not in relapsing prostate cancer. PLoS One. 8:e540962013. View Article : Google Scholar : PubMed/NCBI

32 

Baron VT, Pio R, Jia Z and Mercola D: Early growth response 3 regulates genes of inflammation and directly activates IL6 and IL8 expression in prostate cancer. Br J Cancer. 112:755–764. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods. 25:402–408. 2001. View Article : Google Scholar

34 

National Research Council: Guide for the Care and Use of Laboratory Animals. 8th edition. The National Academies Press; Washington, DC: 2011

35 

Liao F, Ji MY, Shen L, Qiu S, Guo XF and Dong WG: Decreased EGR3 expression is related to poor prognosis in patients with gastric cancer. J Mol Histol. 44:463–468. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Wang ZD, Qu FY, Chen YY, Ran ZS, Liu HY and Zhang HD: Involvement of microRNA-718, a new regulator of EGR3, in regulation of malignant phenotype of HCC cells. J Zhejiang Univ Sci B. 18:27–36. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Hu X, Schwarz JK, Lewis JS Jr, Huettner PC, Rader JS, Deasy JO, Grigsby PW and Wang X: A microRNA expression signature for cervical cancer prognosis. Cancer Res. 70:1441–1448. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Lin M, Chen W, Huang J, Gao H, Ye Y, Song Z and Shen X: MicroRNA expression profiles in human colorectal cancers with liver metastases. Oncol Rep. 25:739–747. 2011.

39 

Fuse M, Nohata N, Kojima S, Sakamoto S, Chiyomaru T, Kawakami K, Enokida H, Nakagawa M, Naya Y, Ichikawa T, et al: Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCN1. Int J Oncol. 38:1093–1101. 2011.PubMed/NCBI

40 

Kojima S, Chiyomaru T, Kawakami K, Yoshino H, Enokida H, Nohata N, Fuse M, Ichikawa T, Naya Y, Nakagawa M, et al: Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer. Br J Cancer. 106:405–413. 2012. View Article : Google Scholar :

41 

Kojima S, Enokida H, Yoshino H, Itesako T, Chiyomaru T, Kinoshita T, Fuse M, Nishikawa R, Goto Y, Naya Y, et al: The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer. J Hum Genet. 59:78–87. 2014. View Article : Google Scholar

42 

Nishimura Y, Takizawa R, Koike S, Kinoshita A, Satomura Y, Kawasaki S, Yamasue H, Tochigi M, Kakiuchi C, Sasaki T, et al: Association of decreased prefrontal hemodynamic response during a verbal fluency task with EGR3 gene polymorphism in patients with schizophrenia and in healthy individuals. Neuroimage. 85:527–534. 2014. View Article : Google Scholar

43 

Li S, Miao T, Sebastian M, Bhullar P, Ghaffari E, Liu M, Symonds AL and Wang P: The transcription factors Egr2 and Egr3 are essential for the control of inflammation and antigen-induced proliferation of B and T cells. Immunity. 37:685–696. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Liu D, Evans I, Britton G and Zachary I: The zinc-finger transcription factor, early growth response 3, mediates VEGF-induced angiogenesis. Oncogene. 27:2989–2998. 2008. View Article : Google Scholar

45 

Cheng H, Hao S, Liu Y, Pang Y, Ma S, Dong F, Xu J, Zheng G, Li S, Yuan W, et al: Leukemic marrow infiltration reveals a novel role for Egr3 as a potent inhibitor of normal hematopoietic stem cell proliferation. Blood. 126:1302–1313. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Marcucci G, Maharry K, Radmacher MD, Mrózek K, Vukosavljevic T, Paschka P, Whitman SP, Langer C, Baldus CD, Liu CG, et al: Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: A Cancer and Leukemia Group B Study. J Clin Oncol. 26:5078–5087. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Soon PS, Tacon LJ, Gill AJ, Bambach CP, Sywak MS, Campbell PR, Yeh MW, Wong SG, Clifton-Bligh RJ, Robinson BG, et al: miR-195 and miR-483-5p identified as predictors of poor prognosis in adrenocortical cancer. Clin Cancer Res. 15:7684–7692. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Xu Y, Zhao F, Wang Z, Song Y, Luo Y, Zhang X, Jiang L, Sun Z, Miao Z and Xu H: MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene. 31:1398–1407. 2012. View Article : Google Scholar :

49 

Vickers MM, Bar J, Gorn-Hondermann I, Yarom N, Daneshmand M, Hanson JE, Addison CL, Asmis TR, Jonker DJ, Maroun J, et al: Stage-dependent differential expression of microRNAs in colorectal cancer: Potential role as markers of metastatic disease. Clin Exp Metastasis. 29:123–132. 2012. View Article : Google Scholar

50 

Olson P, Lu J, Zhang H, Shai A, Chun MG, Wang Y, Libutti SK, Nakakura EK, Golub TR and Hanahan D: MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev. 23:2152–2165. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Yang W, Lee DY and Ben-David Y: The roles of microRNAs in tumorigenesis and angiogenesis. Int J Physiol Pathophysiol Pharmacol. 3:140–155. 2011.PubMed/NCBI

52 

Polytarchou C, Iliopoulos D and Struhl K: An integrated transcriptional regulatory circuit that reinforces the breast cancer stem cell state. Proc Natl Acad Sci USA. 109:14470–14475. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Liu H, Li W, Chen C, Pei Y and Long X: miR-335 acts as a potential tumor suppressor miRNA via downregulating ROCK1 expression in hepatocellular carcinoma. Tumour Biol. 36:6313–6319. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Wang H, Li M, Zhang R, Wang Y, Zang W, Ma Y, Zhao G and Zhang G: Effect of miR-335 upregulation on the apoptosis and invasion of lung cancer cell A549 and H1299. Tumour Biol. 34:3101–3109. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Yang B, Huang J, Liu H, Guo W and Li G: miR-335 directly, while miR-34a indirectly modulate survivin expression and regulate growth, apoptosis, and invasion of gastric cancer cells. Tumour Biol. 37:1771–1779. 2016. View Article : Google Scholar

56 

Scarola M, Schoeftner S, Schneider C and Benetti R: miR-335 directly targets Rb1 (pRb/p105) in a proximal connection to p53-dependent stress response. Cancer Res. 70:6925–6933. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Qiao J, Lee S, Paul P, Theiss L, Tiao J, Qiao L, Kong A and Chung DH: miR-335 and miR-363 regulation of neuroblastoma tumorigenesis and metastasis. Surgery. 154:226–233. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Tomé M, López-Romero P, Albo C, Sepúlveda JC, Fernández-Gutiérrez B, Dopazo A, Bernad A and González MA: miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ. 18:985–995. 2011. View Article : Google Scholar :

59 

Grivennikov SI, Greten FR and Karin M: Immunity, inflammation, and cancer. Cell. 140:883–899. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Balkwill FR and Mantovani A: Cancer-related inflammation: Common themes and therapeutic opportunities. Semin Cancer Biol. 22:33–40. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Shu M, Zhou Y, Zhu W, Zhang H, Wu S, Chen J and Yan G: MicroRNA 335 is required for differentiation of malignant glioma cells induced by activation of cAMP/protein kinase A pathway. Mol Pharmacol. 81:292–298. 2012. View Article : Google Scholar

62 

Xiong SW, Lin TX, Xu KW, Dong W, Ling XH, Jiang FN, Chen G, Zhong WD and Huang J: MicroRNA-335 acts as a candidate tumor suppressor in prostate cancer. Pathol Oncol Res. 19:529–537. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Suzuki T, Inoue A, Miki Y, Moriya T, Akahira J, Ishida T, Hirakawa H, Yamaguchi Y, Hayashi S and Sasano H: Early growth responsive gene 3 in human breast carcinoma: A regulator of estrogen-meditated invasion and a potent prognostic factor. Endocr Relat Cancer. 14:279–292. 2007. View Article : Google Scholar : PubMed/NCBI

64 

Fang F, Shangguan AJ, Kelly K, Wei J, Gruner K, Ye B, Wang W, Bhattacharyya S, Hinchcliff ME, Tourtellotte WG, et al: Early growth response 3 (Egr-3) is induced by transforming growth factor-β and regulates fibrogenic responses. Am J Pathol. 183:1197–1208. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Gómez-Martín D, Díaz-Zamudio M, Galindo-Campos M and Alcocer-Varela J: Early growth response transcription factors and the modulation of immune response: Implications towards autoimmunity. Autoimmun Rev. 9:454–458. 2010. View Article : Google Scholar

66 

Rojas A, Liu G, Coleman I, Nelson PS, Zhang M, Dash R, Fisher PB, Plymate SR and Wu JD: IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR. Oncogene. 30:2345–2355. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Singh RK and Lokeshwar BL: Depletion of intrinsic expression of Interleukin-8 in prostate cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the efficacy of chemotherapeutic drugs. Mol Cancer. 8:572009. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

June 2019
Volume 54 Issue 6

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhang, P., Yang, X., Wang, L., Zhang, D., Luo, Q., & Wang, B. (2019). Overexpressing miR‑335 inhibits DU145 cell proliferation by targeting early growth response 3 in prostate cancer. International Journal of Oncology, 54, 1981-1994. https://doi.org/10.3892/ijo.2019.4778
MLA
Zhang, P., Yang, X., Wang, L., Zhang, D., Luo, Q., Wang, B."Overexpressing miR‑335 inhibits DU145 cell proliferation by targeting early growth response 3 in prostate cancer". International Journal of Oncology 54.6 (2019): 1981-1994.
Chicago
Zhang, P., Yang, X., Wang, L., Zhang, D., Luo, Q., Wang, B."Overexpressing miR‑335 inhibits DU145 cell proliferation by targeting early growth response 3 in prostate cancer". International Journal of Oncology 54, no. 6 (2019): 1981-1994. https://doi.org/10.3892/ijo.2019.4778