Growth inhibitory effects of pegylated IFN-α2b and 5-fluorouracil in combination on renal cell carcinoma cell lines in vitro and in vivo

FUKUKO MORIYA1-3, SACHIKO OGASAWARA1-3, YUJI BASAKI4, JUN AKIBA1,3, SAKIKO KOJIRO1,3, SUGURU FUKAHORI1,3, HIRONORI ISHIZAKI1,3, NAOYO NISHIDA1,3, KEI MATSUOKA2,3, MASAMICHI KOJIRO1,3, MICHIIKO KUWANO3,4 and HIROHISA YANO1,3

Departments of 1Pathology and 2Urology, Kurume University School of Medicine, 3Research Center of Innovative Cancer Therapy of the 21st Century COE Program for Medical Science, Kurume University, 67 Asahi-machi, Kurume, Fukuoka 830-0011; 4Station-II for Collaborative Research Center, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan

Received May 16, 2008; Accepted July 18, 2008

DOI: 10.3892/ijo_00000050

Correspondence to: Dr F. Moriya, Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
E-mail: moriya_fukuko@kurume-u.ac.jp

Key words: renal cell carcinoma, pegylated interferon-α2b, 5-fluorouracil, combination therapy, apoptosis

Abstract. We investigated the effects of pegylated IFN-α2b (PEG-IFN-α2b) alone and PEG-IFN-α2b plus 5-fluorouracil (5-FU) in vitro on the proliferation of renal cell carcinoma (RCC) cell lines. After the transplantation of RCC cells into nude mice, we administered IFN (PEG-IFN-α2b or IFN-α2b) alone, 5-FU alone, or IFN (PEG-IFN-α2b or IFN-α2b) plus 5-FU; and investigated tumor volume, tumor weight, the numbers of apoptotic cells and artery-like blood vessels, relative mRNA expression levels of enzymes which relate to 5-FU metabolism, angiogenesis factor, and type I interferon receptor. RCC cells in vitro were generally and relatively resistant to the anti-proliferative effects of PEG-IFN-α2b, but the addition of 5-FU augmented IFN-induced anti-proliferative effects with the induction of apoptosis. PEG-IFN-α2b in vivo presented stronger anti-tumor effects than IFN-α2b, and its combination with 5-FU augmented the effects. The significant anti-tumor effect of the combination treatment was the increase in apoptotic cell number, but there were no significant differences in the suppression of angiogenesis, expression of IFN receptor, and the actions of metabolic enzymes of 5-FU. In conclusion, PEG-IFN-α2b presents stronger anti-tumor effects than non-pegylated IFN, and the effects are augmented in the combination with 5-FU. Our findings suggest the clinical usefulness of PEG-IFN-α2b in the treatment of RCC.

Introduction

Renal cell carcinoma (RCC) is highly resistant to conventional chemotherapy. The objective response rate is 6-9% for vinblastine and 5-8% for 5-fluorouracil (5-FU) (1). The response rates of treatment regimens using interleukin-2 are 6-31% (2), and the therapeutic response rates of interferon (IFN)-α are 4-33% in patients with metastatic RCC (3). The response rates of immunochemical therapies that utilize chemotherapeutic agents with IFN-α or interleukin-2 range between 8 and 39% (4). Immunochemical therapy is the best treatment for advanced RCC, but potential synergetic effects of the medicines as well as their mechanisms remain to be elucidated.

Wadler and Wienik (5) for the first time proposed a combination therapy of IFN-α and 5-FU in 1988 in their study using colon cancer cell lines. Later, this combination therapy was applied to various types of human malignancies including RCC and hepatocellular carcinoma (HCC). 5-FU has two major anti-tumor mechanisms: one involves its active metabolite 5-fluoro-2'-deoxyuridine-5'-monophosphate (FdUMP), inhibiting the activity of thymidylate synthase (TS) and consequently DNA synthesis; the other is related to the incorporation of 5-FU metabolite into RNA and DNA, thereby disrupting normal RNA processing and function. The sensitivity of cancer cells to 5-FU is often influenced by the enzymes affecting 5-FU metabolism, including TS, dihydro-pyrimidine dehydrogenase (DPD), orotate phosphoribosyltransferase (OPRT), thymidine phosphorylase (TP), uridine phosphorylase (UP) and thymidine kinase (TK).

PEG-IFN-α2b, a new interferon, is a covalent conjugate of recombinant IFN-α2b with monomethoxy polyethylene glycol (PEG) in a 1:1 molar ratio that produces a 31,000-Da molecule (6). PEG conjugation increases the size of the molecule, therefore, the absorption of the pegylated molecule is slower, its serum half-life is longer, and its rate of clearance from the plasma is lower than that of the unmodified molecule. PEG-IFN-α2b thereby increases patient exposure...
to IFN-α2b and requires less frequent administration (6). Clinical trials in chronic hepatitis C patients have suggested that PEG-IFN-α preparations produce more potent therapeutic effects than IFN-α preparations (6-10). Yano et al. (11) examined the in vitro and in vivo anti-tumor effects of PEG- and non-PEG-IFN-α2b on human liver cancer cells, and they reported that the anti-tumor effect of PEG-IFN-α2b was significantly more potent than that of non-PEG-IFN-α2b. In addition, Motzer et al. (12) conducted a phase I study of PEG-IFN-α2b on advanced renal cancer patients, and reported that partial response was obtained in 5 (19%) patients. Yet, there have been few basic studies evaluating the efficacy of PEG-IFN-α2b on RCC in vitro and in vivo.

Our current study examined the in vitro and in vivo anti-tumor effects of PEG-IFN-αb, IFN-α2b, 5-FU, and the combination of one of the two IFNs and 5-FU, on RCC cell lines, using PEG-IFN-α2b concentrations close to the clinical dosage. We also examined the effects of the therapies on apoptotic cells, artery-like blood vessels, the enzymes affecting 5-FU metabolism, vascular endothelial growth factor (VEGF), and type I IFN receptor subunits in human RCC tumors which were developed in nude mice.

Materials and methods

Cell lines and cell culture. This study used 8 human RCC cell lines. KRC/Y (13) was established in our laboratory. KUR11 and KURM were donated by Professor K. Itoh of the Department of Immunology at our University. Caki-1, Caki-2, and ACHN were purchased from American Type Culture Collection. VMRC-RCW was purchased from Japan Health Sciences Foundation. OS-RC-2 was purchased from Riken Cell Bank (Tsukuba, Japan).

Culture medium for KRC/Y consisted of Dulbecco’s modified Eagle’s medium (Nissui Seiyaku Co., Tokyo, Japan) supplemented with heat-inactivated (56°C, 30 min) 5% fetal bovine serum (FBS, Bioserum, Vic, Australia), 100 U/ml penicillin and 100 μg/ml streptomycin (Gibco BRL/Life Technologies Inc., Gaithersburg, MD). Culture medium for Caki-1, Caki-2, VMRC-RCW and ACHN was supplemented with 10% FBS, 100 U/ml penicillin and 100 μg/ml streptomycin (Gibco BRL/Life Technologies Inc., Gaithersburg, MD). Culture medium for KUR11, KURM and OS-RC-2 consisted of RPMI-1640; and each medium was supplemented with 10% FBS, 100 U/ml penicillin and 100 μg/ml streptomycin. Cells were cultured in an atmosphere of 5% CO₂ in air at 37°C. 5-FU was purchased from Kyowa Hakko K.K. (Tokyo, Japan).

IFN and reagents. PEG-IFN-α2b (PEG Intron®) and IFN-α2b (Intron® A) were provided by Schering-Plough K.K. (Osaka, Japan). The specific activity of PEG-IFN-α2b was 6.4x10⁷ IU/mg protein and that of IFN-α2b was 2.6x10⁷ IU/mg protein.

Effects of combination therapy of PEG-IFN-α2b and IFN-α2b on RCC cell proliferation were examined in colorimetric assays by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) cell growth assay kits (Chemicon International Inc.) as described elsewhere (14). Briefly, the RCC cells (1.5x10⁴ cells per well) were seeded on 96-well plates (Nunc Inc., Roskilde, Denmark), cultured for 24 h, and the culture medium was changed to a new medium with or without PEG-IFN-α2b (8, 32, 128, 512 or 2,048 IU/ml). After culturing for 24, 48, 72 or 96 h, the number of viable cells was measured with ImmunoMini NJ-2300 (Nalge Nunc International, Tokyo, Japan) by setting the test wavelength to 570 nm and the reference wavelength to 630 nm. To keep the optical density within linear range, all experiments were performed when the cells were in the logarithmic growth phase. The effects of IFN-α2b on the growth of VMRC-RCW cells were also examined in the same manner.

Effects of combination therapy of PEG-IFN-α2b and 5-FU on the proliferation of RCC cell lines in vitro. RCC cells (VMRC-RCW, 3,000 cells/well) were seeded on 96-well plates (Nunc Inc.), cultured for 24 h, and then the culture medium was changed to a new medium containing PEG-IFN-α2b alone (0, 160, 317, 625, 1,250, 2,500, 5,000 or 10,000 IU/ml); 5-FU alone (0, 0.6, 1.25, 2.5, 5 or 10 μM); or both 5-FU (0, 0.6, 1.25, 2.5, 5, 10 μM) and PEG-IFN-α2b (0, 160, 317, 625, 1,250, 2,500, 5,000 or 10,000 IU/ml). After 96 h of culture, the number of viable cells was examined by MTT assay as described above.

The synergy of cooperative cytotoxicity was determined by the median-effect principle as described by Chou and Talalay (15). Data from each sample were analyzed by using CalcuSyn ver. 2 (Biosoft, Cambridge, UK).

Morphological observation. For morphological observation by light microscopy, 8 RCC cell lines were seeded on Lab-Tek tissue culture chamber slides (Nunc Inc.), cultured with or without PEG-IFN-α2b (1,024, 4,098 or 8,192 IU/ml) for 72 h, fixed for 30 min in Carnoy’s solution, and stained with hematoxylin and eosin (H&E).

In another experiment, one RCC cell line (VMRC-RCW, 8,000 cells/chamber) was seeded on Lab-Tek tissue culture chamber slides (Nunc Inc.), cultured with PEG-IFN-α2b alone (0, 160, 317, 625, 1,250, 2,500, 5,000 IU/ml); 5-FU alone (0, 0.6, 1.25, 2.5, 5.0 μM); PEG-IFN-α2b (0, 160, 317, 625, 1,250, 2,500, 5,000 IU/ml) plus 5-FU (0, 0.6, 1.25, 2.5, 5.0 μM), or PBS, for 72 h, fixed for 30 min in Carnoy’s solution and H&E stained.
8 and 11). The clinical daily dose of IFN-α2b for human RCC is \(600 \times 10^4\) IU/body (\(1.2 \times 10^5\) IU/kg), and this is approximately four times the lowest dose (\(3.2 \times 10^4\) IU/kg) used in this experiment. Tumor size was measured in two directions by using calipers on the first and second days of s.c. injection (day 1 and 2) and then once every 2 days until day 14, and tumor volume (mm\(^3\)) was estimated by using the equation: \(\text{Length} \times (\text{Width})^2 \times 0.5\). Mouse body weight was measured on day 0, 8 and 14. On day 15, all mice were sacrificed and the tumors were removed.

The animals received human care according to criteria outlined in the ‘Guide for the Care and Use of Laboratory Animals’ prepared by the National Academy of Sciences and published by the National Institutes of Health (NIH publication 86-23, revised 1985).

Effects of combination therapy of PEG-IFN-α2b and 5-FU on RCC cell proliferation in nude mice. VMRC-RCW cells (7.5x10^6 cells/mouse) were subcutaneously injected into 4-week-old female BALB/c athymic nude mice (n=58). The mice were divided into 7 groups (n=8 or 9 each) on day 7 when tumor size reached ~10 mm in diameter, and each group was assigned to one of the 7 treatments: i) PEG-IFN-α2b alone (6,400 IU); ii) IFN-α2b alone (6,400 IU); iii) low dose 5-FU alone (160 μg); iv) high dose 5-FU alone (320 μg); v) combination therapy of PEG-IFN-α2b (6,400 IU) and low dose 5-FU; vi) combination therapy of IFN-α2b (6,400 IU) and low dose 5-FU; and (vii) control.

5-FU was administered intra-abdominally every day for 2 consecutive weeks. The dose of 5-FU (160 μg/mouse, 8 mg/kg) is comparable to the clinical dose. Tumor size measurement and IFN administration were performed in the same manner as described above. On day 15, all mice were sacrificed and each tumor was removed. After the tumor weight was measured, half of the obtained tumors were used for histological examination and the other half were used for quantitative real-time RT-PCR.

The number of cells showing characteristics of apoptosis such as cytoplasmic shrinkage, chromatin condensation and nuclear fragmentation was counted in ten 0.25 mm\(^2\) areas within an H&E-stained specimen, and the average number per area was obtained. The TUNEL technique (ApopTag Peroxidase In Situ Apoptosis Detection Kits, Chemicon International, CA, USA) was also used to detect apoptotic cells. The average number of TUNEL-positive cells per area was obtained as described above.

Immunohistochemistry. Double immunohistochemical staining was performed by using anti-mouse endothelial cell (anti-CD34) antibody, anti-human α smooth muscle actin (α-SMA) antibody and histofine simple stain mouse Max-Po (Rat) kits (Nichirei, Tokyo, Japan) as described elsewhere (16). We
calculated the number of artery-like blood vessels in the entire area of each section and obtained for each the mean number per mm².

cDNA preparation and quantitative real-time RT-PCR. Total RNA was extracted using RNA-Bee™ (Tel-Test, Inc., TX) and reverse transcribed using Superscript™ III First-Strand Synthesis System for RT-PCR (Invitrogen, CA) according to the manufacturer’s instructions. Quantitative real-time RT-PCR was performed with an ABI PRISM 7300 (Applied Biosystems, Foster City, CA). We examined 6 enzymes related to 5-FU metabolism, i.e., TS, TP, DPD, OPRT, UP and TK. The sequences of the primers and probes for the 6 enzymes are listed elsewhere (17). The sequences for VEGF were 5’-CCATGAACTTTCTGCTGTCTTGG-3’ as the forward primer, 5’-CTGCGCTGATAGACATCCATGA-3’ as the reverse primer, and 5’-TGCTCTACCTCCAACCATGC CAAGT-3’ as the probe. The sequences of the primers and probes for VEGFR-1, IFNAR-1, IFNAR-2 and glycer-aldehyde-3-phosphate dehydrogenase (GAPDH) were purchased from Applied Biosystems.

Statistical analysis. We used two-factorial ANOVA for the comparisons of tumor volume, tumor weight, number of apoptotic cells, number of artery-like blood vessels, and relative levels of mRNAs related to 5-FU metabolism.

Results

Effects of PEG-IFN-α2b on the proliferation of RCC cell lines in vitro. After adding 2,048 IU/ml of PEG-IFN-α2b, the relative viable cell number of the cultured 8 cell lines was suppressed in a time-dependent manner until 72 h, but at 96 h, suppression was noted in only 2 cell lines (KRC/Y and KUR11). On the other hand, with different doses of PEG-IFN-α2b, the relative viable cell number at 96 h was suppressed in the 6 cell lines, i.e., VMRC-RCW, KRC/Y, KURM, KUR11, ACHN and Caki-1. In the 8 cell lines, IC50 was not reached for either time- and dose-dependent suppressions, but the most sensitive case was KUR11 with the dose of 2,048 IU/ml at 96 h, i.e., the relative viable cell number was 62.7% of the control (Fig. 1).

In the VMRC-RCW cell line, the anti-tumor effects of PEG-IFN-α2b and IFN-α2b were not markedly different.
Effects of the combination treatment of PEG-IFN-α2b and 5-FU on the growth of the VMRC-RCW cell line in vitro. Without 5-FU, the relative viable cell number did not decrease to 50% or lower of the control even when the highest dose of PEG-IFN-α2b (5,000 IU/ml) was added to the culture. When 5-FU (0.6 μM) was used in combination, the relative viable cell number was suppressed to 41.6% even when PEG-IFN-α2b was at the lowest dose (625 IU/ml, Fig. 2). The anti-proliferative effect of these two agents was additive, not synergistic.

Morphological examination in vitro. The 8 cell lines presented such apoptotic features as cytoplasmic shrinkage and chromatin condensation in a varying degree and in a dose-dependent manner at 72 h after adding PEG-IFN-α2b. For the combination treatment of PEG-IFN-α2b and 5-FU, more apoptotic cells were observed than in the PEG-IFN-α2b alone-treated cells, and the apoptotic cells increased dose-dependently to PEG-IFN-α2b plus 5-FU (Fig. 3).

Effects of PEG-IFN-α2b on RCC cell proliferation in nude mice. Chronological changes in estimated tumor volume after IFN administration to nude mice are summarized in Fig. 4. Dose-dependent suppression of tumor volume was observed in mice receiving PEG-IFN-α2b. The estimated tumor volume on day 14 in the mice receiving 6,400 IU of PEG-IFN-α2b became 61.9% of the mice receiving the same dose of IFN-α2b (p<0.01) and 56.8% of the control (p<0.001). The tumor weight on day 15 in the mice receiving 6,400 IU of PEG-IFN-α2b became 63.2% of the control (p<0.001, Table I). Significant differences in the estimated tumor volume were observed between each PEG-IFN-α2b group (640, 6,400, 64,000 IU) and the control group (culture medium), as well as between the PEG-IFN-α2b groups and the IFN-α2b group.

Table I. Effects of PEG-IFN-α2b and IFN-α2b on RCC cell proliferation in nude mice.

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Number</th>
<th>Tumor weight (g, mean ± SE)</th>
<th>Body weight (g, mean ± SE on day 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (culture medium)</td>
<td>9</td>
<td>1.835±0.132</td>
<td>17.122±0.362</td>
</tr>
<tr>
<td>IFN-α2b (640 IU)</td>
<td>9</td>
<td>1.735±0.177</td>
<td>16.089±0.599</td>
</tr>
<tr>
<td>IFN-α2b (6,400 IU)</td>
<td>9</td>
<td>1.455±0.140</td>
<td>16.667±0.420</td>
</tr>
<tr>
<td>PEG-IFN-α2b (640 IU)</td>
<td>9</td>
<td>1.267±0.072</td>
<td>16.156±0.308</td>
</tr>
<tr>
<td>PEG-IFN-α2b (6,400 IU)</td>
<td>9</td>
<td>1.160±0.075</td>
<td>15.244±0.313</td>
</tr>
<tr>
<td>PEG-IFN-α2b (64,000 IU)</td>
<td>9</td>
<td>0.920±0.126</td>
<td>16.922±0.601</td>
</tr>
<tr>
<td>PEG-IFN-α2b (640,000 IU)</td>
<td>8</td>
<td>0.444±0.077</td>
<td>17.638±0.717</td>
</tr>
</tbody>
</table>

Cultured VMRC-RCW cells were subcutaneously transplanted in each nude mouse (1.0x10⁷/mouse). Seven days later, when the largest diameter of the tumor reached ~10 mm, mice were treated twice per week with s.c. injection of PEG-IFN-α2b, IFN-α2b, or culture medium. All mice were sacrificed on day 15. *p<0.01 and **p<0.001 vs. control; *p<0.05 vs. the same concentration of IFN.

Figure 4. Chronological changes in the estimated volume of subcutaneously transplanted RCC tumors (VMRC-RCW cells, 1.0x10⁷) in nude mice according to the treatment dose. Seven days after the transplantation, when the largest tumor diameter reached ~10 mm (day 0), mice were divided into 7 groups (n=8 or 9, each). The arrows show the days of treatment. *p<0.05, **p<0.01 and ***p<0.001 vs. control; *p<0.01 vs. the same dose of IFN-α2b (6,400 IU). The values represent the average ± SE. PEG-IFN, PEG-IFN-α2b.

Figure 5. Chronological changes in the estimated volume of subcutaneously transplanted RCC tumors (VMRC-RCW cells, 7.5x10⁶) in nude mice according to the treatment method. Seven days after the transplantation, when the largest tumor diameter reached ~10 mm (day 0), mice were divided into 7 groups (n=8 or 9, each), i.e., PEG-IFN-α2b (6,400 IU) alone; IFN-α2b (6,400 IU) alone; combination of 5-FU and PEG-IFN-α2b (6,400 IU) or IFN-α2b (6,400 IU); 5-FU alone (low or high dose); and culture medium alone (control). The arrows show the days of treatment. *p<0.05, **p<0.01 and ***p<0.001 vs. control; *p<0.05 vs. IFN-α2b and 5-FU. The values represent the average ± SE. PEG-IFN, PEG-IFN-α2b.
64,000, 640,000 IU) and the control (p<0.05 to p<0.001, Fig. 3). There was no significant difference between 640 or 6,400 IU of the IFN-α2b group and the control. There were no significant differences in body weight of the mice among the groups.

Table II. Effects of combination therapy of PEG-IFN-α2b and 5-FU on RCC cell proliferation in nude mice.

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Number</th>
<th>Tumor weight (g, mean ± SE)</th>
<th>Body weight (g, mean ± SE on day 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (culture medium)</td>
<td>8</td>
<td>2.255±0.102</td>
<td>17.188±0.578</td>
</tr>
<tr>
<td>5-FU (low dose)</td>
<td>9</td>
<td>2.430±0.185</td>
<td>16.778±0.595</td>
</tr>
<tr>
<td>5-FU (high dose)</td>
<td>7</td>
<td>1.603±0.107c</td>
<td>15.686±0.814</td>
</tr>
<tr>
<td>IFN-α2b alone</td>
<td>8</td>
<td>1.812±0.084b</td>
<td>16.363±0.692</td>
</tr>
<tr>
<td>IFN-α2b + 5-FU</td>
<td>8</td>
<td>1.917±0.170</td>
<td>16.344±0.426</td>
</tr>
<tr>
<td>PEG-IFN-α2b</td>
<td>8</td>
<td>1.771±0.172a</td>
<td>15.963±0.459</td>
</tr>
<tr>
<td>PEG-IFN-α2b + 5-FU</td>
<td>9</td>
<td>1.742±0.194a</td>
<td>15.767±0.621</td>
</tr>
</tbody>
</table>

Cultured VMRC-RCW cells were subcutaneously transplanted in each nude mouse (7.5x10⁶/mouse). Seven days later, when the largest diameter of the tumor reached ~10 mm, mice were treated with s.c. injection of IFNs and/or intraperitoneal injection of 5-fluorouracil (5-FU) daily. All mice were sacrificed on day 15. The concentration of both PEG-IFN-α2b and IFN-α2b was 6,400 IU/ml. ³p<0.05, ²p<0.01 and ¹p<0.001 vs. control.

Figure 6. Photomicrograph of a subcutaneous human RCC tumor in nude mice, which developed after the injection of VMRC-RCW cells. (A) A control mouse that received culture medium alone. The tumor showed a thick trabecular arrangement of tumor cells and thin fibrous connective tissues and capillary vessels in the stroma. (B) A mouse that received PEG-IFN-α2b and 5-FU. There were many apoptotic tumor-cells (thick arrows, H&E staining, x200). (C and D) Higher magnifications of B (x400). Apoptotic tumor-cells characterized by shrinkage and eosinophilic change in the cytoplasm and chromatin condensation are shown (thick arrows, H&E staining). (E) TUNEL-positive apoptotic cells showing brown nuclei (thin arrows, TUNEL staining, x200).

Effects of the combination therapy of PEG-IFN-α2b and 5-FU on RCC cell proliferation in nude mice. Chronological changes in estimated tumor volume are shown in Fig. 5. The tumor volume on day 14 for the combination therapy of PEG-IFN-α2b and 5-FU was 54.2% of the control (p<0.0001).
Table III. Relative mRNA expression levels of the enzymes related with 5-FU metabolism, VEGF, VEGFR-1 and type I IFN receptor subunits.

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>DPD</th>
<th>TP</th>
<th>TK</th>
<th>TS</th>
<th>UP</th>
<th>OPRT</th>
<th>VEGF</th>
<th>VEGFR-1</th>
<th>IFNAR-1</th>
<th>IFNAR-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-FU (low dose)</td>
<td>129</td>
<td>101</td>
<td>68</td>
<td>182</td>
<td>59</td>
<td>48</td>
<td>116</td>
<td>135</td>
<td>122</td>
<td>94</td>
</tr>
<tr>
<td>5-FU (high dose)</td>
<td>72</td>
<td>50</td>
<td>52</td>
<td>40</td>
<td>86</td>
<td>41</td>
<td>30</td>
<td>93</td>
<td>59</td>
<td>90</td>
</tr>
<tr>
<td>IFN-α2b</td>
<td>110</td>
<td>71</td>
<td>82</td>
<td>119</td>
<td>100</td>
<td>103</td>
<td>97</td>
<td>134</td>
<td>108</td>
<td>174</td>
</tr>
<tr>
<td>IFN-α2b + 5-FU</td>
<td>95</td>
<td>80</td>
<td>85</td>
<td>74</td>
<td>53</td>
<td>106</td>
<td>56</td>
<td>111</td>
<td>63</td>
<td>44.8±d</td>
</tr>
<tr>
<td>PEG-IFN-α2b</td>
<td>648±d</td>
<td>420±d</td>
<td>313</td>
<td>297±d</td>
<td>76</td>
<td>124</td>
<td>366±d</td>
<td>277</td>
<td>159</td>
<td>217</td>
</tr>
<tr>
<td>PEG-IFN-α2b + 5-FU</td>
<td>159±e</td>
<td>143±e</td>
<td>162</td>
<td>129</td>
<td>129</td>
<td>86</td>
<td>251±e</td>
<td>138</td>
<td>91</td>
<td>141</td>
</tr>
</tbody>
</table>

mRNA levels were examined by quantitative real-time RT-PCR and normalized with GAPDH. The values of relative mRNA expression level represent the average of the ratio to the level of control in each group. *p<0.05 and †p<0.01 vs. control; ‡p<0.05 vs. PEG-IFN-α2b; §p<0.05 vs. IFN-α2b; and ††p<0.01 vs. IFN-α2b plus 5-FU. DPD, dihydropyrimidine dehydrogenase; TP, thymidine phosphorylase; TK, thymidine kinase; TS, thymidylate synthase; UP, uridine phosphorylase; OPRT, orotate phosphoribosyl transferase; VEGF, vascular endothelial growth factor; VEGFR-1, VEGF receptor 1; IFNAR-1, type I interferon receptor subunit 1; and IFNAR-2, type I interferon receptor subunit 2.

The tumor weights of the mice on day 15 were significantly different between the control and the 5-FU high dose group, each IFN alone group, and the combination group of PEG-IFN-α2b and 5-FU. The two types of IFNs and/or 5-FU did not affect the body weight of the mice (Table II).

Histological examination of the RCC tumor specimens stained with H&E revealed that the number of apoptotic cells was significantly higher in the mice treated with 6,400 IU of PEG-IFN-α2b (p<0.01) or 6,400 IU of IFN-α2b (p<0.05) in comparison to the control (Fig. 6A-D). The incidence of apoptosis in TUNEL-stained sections showed the same tendencies as those obtained in the H&E-stained sections (Fig. 6E). The number of apoptotic cells significantly increased in the mouse tumors treated with the combination therapy in comparison to the control (for each IFN, p<0.0001). The number also significantly increased with the combination treatment of PEG-IFN-α2b and 5-FU in comparison to PEG-IFN-α2b alone (p<0.0001), and with the combination of IFN-α2b and 5-FU in comparison to IFN-α2b alone (p<0.05, Fig. 7).

The results of quantitative real-time RT-PCR are shown in Table III. The VEGF mRNA levels increased significantly in the PEG-IFN-α2b alone group (p<0.05 vs. control, p<0.05 vs. IFN-α2b) in the combination (PEG-IFN-α2b plus 5-FU) group (p<0.05 vs. control, p<0.01 vs. IFN-α2b plus 5-FU). There were also significant increases in the expression levels of DPD (p<0.01), TP (p<0.05), and TS (p<0.05) in the PEG-IFN-α2b alone group in comparison to the control. On the other hand, significant decreases were observed in the expression levels of DPD (p<0.01), TP (p<0.05), and TS (p<0.05) in the combination (PEG-IFN-α2b plus 5-FU) group in comparison to the PEG-IFN-α2b alone group. In addition, the TS mRNA levels in the PEG-IFN-α2b group increased in comparison to the IFN-α2b group (p<0.05). The relative mRNA levels of IFN-α2b receptors in the combination group were lower than the levels of the IFN alone group.

The number of artery-like blood vessels increased slightly in comparison to the control in the groups receiving IFN-α2b alone, PEG-IFN-α2b alone, or the combination therapies; and there were no significant differences among the 7 groups (Fig. 8).

Discussion

Shang et al (18) examined 5 RCC cell lines and reported that the greatest decrease in the viable cell number after adding 1,600 IU/ml of Sumiferon to the cultures was 42% (58% of the control). On the other hand, Vyas et al (19) comparatively examined the anti-tumor effects of PEG-IFN-α2b and IFN-α2b by using an RCC cell line, ACHN, and reported that the addition of 1,033 IU/ml of PEG-IFN-α2b suppressed the viable cell number to 50% of the control. Our current
methods, and possible changes in cell characteristics due to different cell density in the experiments, different measurement findings are not clear, however, they may be related to the effects of PEG-IFN-α.

In the current study, the combination of PEG-IFN-α and IFN-α2b was more effective in promoting 5-FU-induced apoptosis in RCC cells. In our experiments, the number of apoptotic cells increased in a dose-dependent manner, and 50 and 100 IU/ml of IFN-α were able to promote apoptosis in RCC cells. On the other hand, 5-FU induced apoptosis in a dose-dependent manner, and 5-FU and mitomycin C resulted in a decrease in blood vessel density in the tumors, which then resulted in the shrinkage of the tumor size. On the other hand, Kojo et al (16) reported that there was no significant relation between the tumor shrinkage effects and angiogenesis factors or artery-like blood vessels when IFN-α and 5-FU were administered in combination to nude mice receiving transplantation of HCC cells. In our current study, the mRNA expression of VEGF and the number of artery-like blood vessels in the tumors were not suppressed in the PEG-IFN-α2b alone group and the PEG-IFN-α2b plus 5-FU group, but the estimated tumor volume of the PEG-IFN-α2b plus 5-FU group was the most suppressed among the groups. The reason for these contrary findings is unclear. Angiogenesis plays an important role in the proliferation and metastasis of solid tumors such as renal cancer, therefore the relation between angiogenesis factors and anti-tumor effects should be investigated in future studies by using different IFN preparations and other RCC cell lines.

It has been reported that IFN directly suppresses tumor proliferation and at the same time augments the suppressive effects of 5-FU on tumor growth, including the induction of apoptosis (15, 22). In regards to the mechanism of this augmentation, several researchers reported that IFN-α acts on the metabolic pathway of 5-FU (23, 24). Low levels of TS and DPD and high levels of OPRT, TP, UP and TK render cancer cells sensitive to 5-FU. In our results, the enzymes related to 5-FU metabolism, except OPRT, slightly increased (not significantly) in comparison to the control. Therefore, the activity of 5-FU-related enzymes were not related to the anti-tumor effects shown in our PEG-IFN-α2b plus 5-FU group.

IFN-α2b exerts its actions through a specific cell surface receptor. Type I IFN receptor, which consists of two subunits IFNAR-1 and IFNAR-2. IFNAR-2 is the binding subunit and is more important than IFNAR-1 for the expression of IFN-α2b activity (25, 27). Oie et al (17) examined the expression of type I IFN receptor mRNA in 6 HCC cell lines treated with 5-FU. They showed that the expression of type I IFN receptor was markedly increased in the 3 cell lines whose proliferation was suppressed synergistically by the administration of 5-FU and IFN-α than in the other 3 cell lines whose proliferation was suppressed in an additive manner. In our current study, expression of IFNAR-1 and IFNAR-2 increased in the IFN-α2b alone and PEG-IFN-α2b alone groups, whereas the expression levels were markedly lower

![Figure 8. Number of artery-like blood vessels in the tumors. The number was counted in the whole area of each section, and mean number per mm² was obtained. Each figure shows the average ± SE. PEG-IFN: PEG-IFN-α2b.](image)
in the combination groups of IFN-α plus 5-FU than in the IFN alone groups. These findings differ from those of Oie et al.

Our results confirmed that in the treatment of RCC, PEG-IFN-α2b presents more potent anti-tumor effects than conventional non-pegylated IFN-α2b, and the effects are augmented when 5-FU is used in combination. The most probable mechanism of this potent effect is apoptosis induction, and the target molecules that induce apoptosis will be determined in future studies. We expect that the addition of another agent to the combination of IFN-α2b and 5-FU would result in more potent anti-tumor effects in the treatment of RCC.

Acknowledgements

We thank Ms. Akemi Fujiyoshi for her assistance in our experiments. This study was supported by a Grant-in-Aid from the Ministry of Health, Labor and Welfare of Japan (no. 17200501) and by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Science, Sports and Culture, Japan (no. 19590412).

References