Novel Notch signaling inhibitor NSI‑1 suppresses nuclear translocation of the Notch intracellular domain

  • Authors:
    • Takaya Shiraishi
    • Masahiro Sakaitani
    • Satoko Otsuguro
    • Katsumi Maenaka
    • Toshiharu Suzuki
    • Tadashi Nakaya
  • View Affiliations

  • Published online on: July 19, 2019     https://doi.org/10.3892/ijmm.2019.4280
  • Pages: 1574-1584
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The Notch receptor serves a fundamental role in the regulation of cell fate determination through intracellular signal transmission. Mutation of the Notch receptor results in abnormal active signaling, leading to the development of diseases involving abnormal cell growth, including malignant tumors. Therefore, the Notch signaling pathway is a useful pharmacological target for the treatment of cancer. In the present study, a compound screening system was designed to identify inhibitors of the Notch signaling targeting Notch intracellular domain (NICD). A total of 9,600 compounds were analyzed using the Michigan Cancer Foundation‑7 (MCF7) human breast adenocarcinoma cell line and the SH‑SY5Y human neuroblastoma cell line with the reporter assay system using an artificial protein encoding a partial Notch carboxyl‑terminal fragment fused to the Gal4 DNA‑binding domain. The molecular mechanism underlying the inhibition of Notch signaling by a hit compound was further validated using biochemical and cell biological approaches. Using the screening system, a potential candidate, Notch signaling inhibitor‑1 (NSI‑1), was isolated which showed 50% inhibition at 6.1 µM in an exogenous Notch signaling system. In addition, NSI‑1 suppressed the nuclear translocation of NICD and endogenous gene expression of hairy and enhancer of split‑1, indicating that NSI‑1 specifically targets Notch. Notably, NSI‑1 suppressed the cell viability of MCF7 cells and another human breast adenocarcinoma cell line, MDA‑MB‑231 exhibiting constitutive and high Notch signaling activity, whereas no significant effect was observed in the SH‑SY5Y cells bearing a lower Notch signaling activity. NSI‑1 significantly suppressed the viability of SH‑SY5Y cells expressing exogenous human Notch1. These results indicate that NSI‑1 is a novel Notch signaling inhibitor and suggest its potential as a useful drug for the treatment of diseases induced by constitutively active Notch signaling.

References

1 

Cabrera CV: Lateral inhibition and cell fate during neurogenesis in Drosophila: The interactions between scute, Notch and Delta. Development. 110:733–742. 1990.PubMed/NCBI

2 

Schroeter EH, Kisslinger JA and Kopan R: Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 393:382–386. 1998. View Article : Google Scholar : PubMed/NCBI

3 

Logeat F, Bessia C, Brou C, LeBail O, Jarriault S, Seidah NG and Israël A: The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc Natl Acad Sci USA. 95:8108–8112. 1998. View Article : Google Scholar : PubMed/NCBI

4 

Blaumueller CM, Qi H, Zagouras P and Artavanis-Tsakonas S: Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell. 90:281–291. 1997. View Article : Google Scholar : PubMed/NCBI

5 

Groot AJ, Habets R, Yahyanejad S, Hodin CM, Reiss K, Saftig P, Theys J and Vooijs M: Regulated proteolysis of NOTCH2 and NOTCH3 receptors by ADAM10 and presenilins. Mol Cell Biol. 34:2822–2832. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Andersson ER, Sandberg R and Lendahl U: Notch signaling: Simplicity in design, versatility in function. Development. 138:3593–3612. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Francis R, McGrath G, Zhang J, Ruddy DA, Sym M, Apfeld J, Nicoll M, Maxwell M, Hai B, Ellis MC, et al: Aph-1 and pen-2 are required for Notch pathway signaling, gamma-secretase cleavage of betaAPP, and presenilin protein accumulation. Dev Cell. 3:85–97. 2002. View Article : Google Scholar : PubMed/NCBI

8 

Edbauer D, Winkler E, Regula JT, Pesold B, Steiner H and Haass C: Reconstitution of gamma-secretase activity. Nat Cell Biol. 5:486–488. 2003. View Article : Google Scholar : PubMed/NCBI

9 

Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS and Selkoe DJ: Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci USA. 100:6382–6387. 2003. View Article : Google Scholar : PubMed/NCBI

10 

Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, Thinakaran G and Iwatsubo T: The role of presenilin cofactors in the gamma-secretase complex. Nature. 422:438–441. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Hayashi I, Urano Y, Fukuda R, Isoo N, Kodama T, Hamakubo T, Tomita T and Iwatsubo T: Selective reconstitution and recovery of functional gamma-secretase complex on budded baculovirus particles. J Biol Chem. 279:38040–38046. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Mao L: NOTCH mutations: Multiple faces in human malignancies. Cancer Prev Res (Phila). 8:259–261. 2015. View Article : Google Scholar

13 

Pannuti A, Foreman K, Rizzo P, Osipo C, Golde T, Osborne B and Miele L: Targeting Notch to target cancer stem cells. Clin Cancer Res. 16:3141–3152. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Zhao ZL, Zhang L, Huang CF, Ma SR, Bu LL, Liu JF, Yu GT, Liu B, Gutkind JS, Kulkarni AB, et al: NOTCH1 inhibition enhances the efficacy of conventional chemotherapeutic agents by targeting head neck cancer stem cell. Sci Rep. 6:247042016. View Article : Google Scholar : PubMed/NCBI

15 

Yahyanejad S, Theys J and Vooijs M: Targeting Notch to overcome radiation resistance. Oncotarget. 7:7610–7628. 2016. View Article : Google Scholar :

16 

Yuan X, Wu H, Xu H, Xiong H, Chu Q, Yu S, Wu GS and Wu K: Notch signaling: An emerging therapeutic target for cancer treatment. Cancer Lett. 369:20–27. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Andersson ER and Lendahl U: Therapeutic modulation of Notch signalling-are we there yet? Nat Rev Drug Discov. 13:357–378. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Morohashi Y, Kan T, Tominari Y, Fuwa H, Okamura Y, Watanabe N, Sato C, Natsugari H, Fukuyama T, Iwatsubo T and Tomita T: C-terminal fragment of presenilin is the molecular target of a dipeptidic gamma-secretase-specific inhibitor DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester). J Biol Chem. 281:14670–14676. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Haapasalo A and Kovacs DM: The many substrates of presenilin/γ-secretase. J Alzheimers Dis. 25:3–28. 2011. View Article : Google Scholar

20 

Mishra-Gorur K, Rand MD, Perez-Villamil B and Artavanis-Tsakonas S: Down-regulation of Delta by proteolytic processing. J Cell Biol. 159:313–324. 2002. View Article : Google Scholar : PubMed/NCBI

21 

Araki Y, Tomita S, Yamaguchi H, Miyagi N, Sumioka A, Kirino Y and Suzuki T: Novel cadherin-related membrane proteins, Alcadeins, enhance the X11-like protein-mediated stabilization of amyloid beta-protein precursor metabolism. J Biol Chem. 278:49448–49458. 2003. View Article : Google Scholar : PubMed/NCBI

22 

Ando K, Iijima KI, Elliott JI, Kirino Y and Suzuki T: Phosphorylation-dependent regulation of the interaction of amyloid precursor protein with Fe65 affects the production of beta-amyloid. J Biol Chem. 276:40353–40361. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Okauchi T, Itonaga M, Minami T, Owa T, Kitoh K and Yoshino H: A general method for acylation of indoles at the 3-position with acyl chlorides in the presence of dialkylaluminum chloride. Org Lett. 2:1485–1487. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

25 

Nakaya T, Kawai T and Suzuki T: Regulation of FE65 nuclear translocation and function by amyloid beta-protein precursor in osmotically stressed cells. J Biol Chem. 283:19119–19131. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Dovey HF, John V, Anderson JP, Chen LZ, de Saint Andrieu P, Fang LY, Freedman SB, Folmer B, Goldbach E, Holsztynska EJ, et al: Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem. 76:173–181. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Albano E, Rundgren M, Harvison PJ, Nelson SD and Moldéus P: Mechanisms of N-acetyl-p-benzoquinone imine cytotoxicity. Mol Pharmacol. 28:306–311. 1985.PubMed/NCBI

28 

Kimberly WT, Zheng JB, Guénette SY and Selkoe DJ: The intracellular domain of the beta-amyloid precursor protein is stabilized by Fe65 and translocates to the nucleus in a notch-like manner. J Biol Chem. 276:40288–40292. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Cao X and Südhof TC: Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation. J Biol Chem. 279:24601–24611. 2004. View Article : Google Scholar : PubMed/NCBI

30 

D'Angelo RC, Ouzounova M, Davis A, Choi D, Tchuenkam SM, Kim G, Luther T, Quraishi AA, Senbabaoglu Y, Conley SJ, et al: Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity. Mol Cancer Ther. 14:779–787. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Gupta-Rossi N, Le Bail O, Gonen H, Brou C, Logeat F, Six E, Ciechanover A and Israël A: Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J Biol Chem. 276:34371–34378. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Oberg C, Li J, Pauley A, Wolf E, Gurney M and Lendahl U: The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. J Biol Chem. 276:35847–35853. 2001. View Article : Google Scholar : PubMed/NCBI

33 

Wu G, Lyapina S, Das I, Li J, Gurney M, Pauley A, Chui I, Deshaies RJ and Kitajewski J: SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation. Mol Cell Biol. 21:7403–7415. 2001. View Article : Google Scholar : PubMed/NCBI

34 

Fryer CJ, White JB and Jones KA: Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell. 16:509–520. 2004. View Article : Google Scholar : PubMed/NCBI

35 

Zage PE, Nolo R, Fang W, Stewart J, Garcia-Manero G and Zweidler-McKay PA: Notch pathway activation induces neuroblastoma tumor cell growth arrest. Pediatr Blood Cancer. 58:682–689. 2012. View Article : Google Scholar :

36 

Cheng YL, Choi Y, Seow WL, Manzanero S, Sobey CG, Jo DG and Arumugam TV: Evidence that neuronal Notch-1 promotes JNK/c-Jun activation and cell death following ischemic stress. Brain Res. 1586:193–202. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Cama A, Verginelli F, Lotti LV, Napolitano F, Morgano A, D'Orazio A, Vacca M, Perconti S, Pepe F, Romani F, et al: Integrative genetic, epigenetic and pathological analysis of para-ganglioma reveals complex dysregulation of NOTCH signaling. Acta Neuropathol. 126:575–594. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Ferrari-Toninelli G, Bonini SA, Uberti D, Buizza L, Bettinsoli P, Poliani PL, Facchetti F and Memo M: Targeting Notch pathway induces growth inhibition and differentiation of neuroblastoma cells. Neuro Oncol. 12:1231–1243. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Wang M, Ma X, Wang J, Wang L and Wang Y: Pretreatment with the γ-secretase inhibitor DAPT sensitizes drug-resistant ovarian cancer cells to cisplatin by downregulation of Notch signaling. Int J Oncol. 44:1401–1409. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Shah MM, Zerlin M, Li BY, Herzog TJ, Kitajewski JK and Wright JD: The role of Notch and gamma-secretase inhibition in an ovarian cancer model. Anticancer Res. 33:801–808. 2013.PubMed/NCBI

41 

Qiu H, Fang X, Luo Q and Ouyang G: Cancer stem cells: A potential target for cancer therapy. Cell Mol Life Sci. 72:3411–3424. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Crabtree JS, Singleton CS and Miele L: Notch signaling in neuroendocrine tumors. Front Oncol. 6:942016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 44 Issue 4

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Shiraishi, T., Sakaitani, M., Otsuguro, S., Maenaka, K., Suzuki, T., & Nakaya, T. (2019). Novel Notch signaling inhibitor NSI‑1 suppresses nuclear translocation of the Notch intracellular domain. International Journal of Molecular Medicine, 44, 1574-1584. https://doi.org/10.3892/ijmm.2019.4280
MLA
Shiraishi, T., Sakaitani, M., Otsuguro, S., Maenaka, K., Suzuki, T., Nakaya, T."Novel Notch signaling inhibitor NSI‑1 suppresses nuclear translocation of the Notch intracellular domain". International Journal of Molecular Medicine 44.4 (2019): 1574-1584.
Chicago
Shiraishi, T., Sakaitani, M., Otsuguro, S., Maenaka, K., Suzuki, T., Nakaya, T."Novel Notch signaling inhibitor NSI‑1 suppresses nuclear translocation of the Notch intracellular domain". International Journal of Molecular Medicine 44, no. 4 (2019): 1574-1584. https://doi.org/10.3892/ijmm.2019.4280