Open Access

Identification of differentially expressed genes and preliminary validations in cardiac pathological remodeling induced by transverse aortic constriction

  • Authors:
    • Hui‑Bo Wang
    • Rong Huang
    • Kang Yang
    • Man Xu
    • Di Fan
    • Ming‑Xin Liu
    • Si‑Hui Huang
    • Li‑Bo Liu
    • Hai‑Ming Wu
    • Qi‑Zhu Tang
  • View Affiliations

  • Published online on: July 30, 2019     https://doi.org/10.3892/ijmm.2019.4291
  • Pages: 1447-1461
  • Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Cardiac remodeling predisposes to heart failure if the burden is unresolved, and heart failure is an important cause of mortality in humans. The aim of the present study was to identify the key genes involved in cardiac pathological remodeling induced by pressure overload. Gene expression profiles of the GSE5500, GSE18224, GSE36074 and GSE56348 datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs), defined as |log2FC|>1 (FC, fold change) and an adjusted P‑value of <0.05, were screened using the R software with the limma package. Gene ontology enrichment analysis was performed and a protein‑protein interaction (PPI) network of the DEGs was constructed. A cardiac remodeling model induced by transverse aortic constriction (TAC) was established. Furthermore, consistent DEGs were further validated using reverse transcription‑quantitative polymerase chain reaction (RT‑PCR) analysis, western blotting and immunohistochemistry in the ventricular tissue samples after TAC or sham operation. A total of 24 common DEGs were identified (23 significantly upregulated and 1 downregulated), of which 9 genes had been previously confirmed to be directly involved in cardiac remodeling. Hence, the level of expression of the other 15 genes was detected in subsequent studies via RT‑PCR. Based on the results of the PPI network analysis and RT‑PCR, we further detected the protein levels of Itgbl1 and Asporin, which were consistent with the results of bioinformatics analysis and RT‑PCR. The expression of Itgbl1, Aspn, Fstl1, Mfap5, Col8a1, Ltbp2, Mfap4, Pamr1, Cnksr1, Aqp8, Meox1, Gdf15 and Srpx was found to be upregulated in a mouse model of cardiac remodeling, while that of Retnla was downregulated. Therefore, the present study identified the key genes implicated in cardiac remodeling, aiming to provide new insight into the underlying mechanism.

References

1 

Yusuf S, Wood D, Ralston J and Reddy KS: The World Heart Federation's vision for worldwide cardiovascular disease prevention. Lancet. 386:399–402. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Sandri M, Viehmann M, Adams V, Rabald K, Mangner N, Höllriegel R, Lurz P, Erbs S, Linke A, Kirsch K, et al: Chronic heart failure and aging-effects of exercise training on endothelial function and mechanisms of endothelial regeneration: Results from the leipzig exercise intervention in chronic heart failure and aging (LEICA) study. Eur J Prev Cardiol. 23:349–358. 2016. View Article : Google Scholar

3 

Schirone L, Forte M, Palmerio S, Yee D, Nocella C, Angelini F, Pagano F, Schiavon S, Bordin A, Carrizzo A, et al: A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid Med Cell Longev. 2017:39201952017. View Article : Google Scholar : PubMed/NCBI

4 

Wu QQ, Xiao Y, Yuan Y, Ma ZG, Liao HH, Liu C, Zhu JX, Yang Z, Deng W and Tang QZ: Mechanisms contributing to cardiac remodelling. Clin Sci (Lond). 131:2319–2345. 2017. View Article : Google Scholar

5 

Keeler AM and Flotte TR: Cell and gene therapy for genetic diseases: Inherited disorders affecting the lung and those mimicking sudden infant death syndrome. Hum Gene Ther. 23:548–556. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Barbosa C, Peixeiro I and Romao L: Gene expression regulation by upstream open reading frames and human disease. PLoS Genet. 9:e10035292013. View Article : Google Scholar : PubMed/NCBI

7 

Patel A and Cheung SW: Application of DNA Microarray to clinical diagnostics. Methods Mol Biol. 1368:111–132. 2016. View Article : Google Scholar

8 

Hanif W, Alex L, Su Y, Shinde AV, Russo I, Li N and Frangogiannis NG: Left atrial remodeling, hypertrophy, and fibrosis in mouse models of heart failure. Cardiovasc Pathol. 30:27–37. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Guo Y, Bao Y, Ma M and Yang W: Identification of key candidate genes and pathways in colorectal cancer by integrated bioinformatical analysis. Int J Mol Sci. 18:E7222017. View Article : Google Scholar : PubMed/NCBI

10 

Bisping E, Ikeda S, Kong SW, Tarnavski O, Bodyak N, McMullen JR, Rajagopal S, Son JK, Ma Q, Springer Z, et al: Gata4 is required for maintenance of postnatal cardiac function and protection from pressure overload-induced heart failure. Proc Natl Acad Sci USA. 103:14471–14476. 2006. View Article : Google Scholar : PubMed/NCBI

11 

Fliegner D, Schubert C, Penkalla A, Witt H, Kararigas G, Dworatzek E, Staub E, Martus P, Ruiz Noppinger P, Kintscher U, et al: Female sex and estrogen receptor-beta attenuate cardiac remodeling and apoptosis in pressure overload. Am J Physiol Regul Integr Comp Physiol. 298:R1597–R1606. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Skrbic B, Bjørnstad JL, Marstein HS, Carlson CR, Sjaastad I, Nygård S, Bjørnstad S, Christensen G and Tønnessen T: Differential regulation of extracellular matrix constituents in myocardial remodeling with and without heart failure following pressure overload. Matrix Biol. 32:133–142. 2013. View Article : Google Scholar

13 

Lai L, Leone TC, Keller MP, Martin OJ, Broman AT, Nigro J, Kapoor K, Koves TR, Stevens R, Ilkayeva OR, et al: Energy metabolic reprogramming in the hypertrophied and early stage failing heart: A multisystems approach. Circ Heart Fail. 7:1022–1031. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Popik OV, Saik OV, Petrovskiy ED, Sommer B, Hofestädt R, Lavrik IN and Ivanisenko VA: Analysis of signaling networks distributed over intracellular compartments based on protein-protein interactions. BMC Genomics. 15(Suppl 12): S72014. View Article : Google Scholar

16 

Yuan YP, Ma ZG, Zhang X, Xu SC, Zeng XF, Yang Z, Deng W and Tang QZ: CTRP3 protected against doxorubicin-induced cardiac dysfunction, inflammation and cell death via activation of Sirt1. J Mol Cell Cardiol. 114:38–47. 2018. View Article : Google Scholar

17 

Ma ZG, Dai J, Zhang WB, Yuan Y, Liao HH, Zhang N, Bian ZY and Tang QZ: Protection against cardiac hypertrophy by genipo-side involves the GLP-1 receptor/AMPKα signalling pathway. Br J Pharmacol. 173:1502–1516. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Zhang X, Ma ZG, Yuan YP, Xu SC, Wei WY, Song P, Kong CY, Deng W and Tang QZ: Rosmarinic acid attenuates cardiac fibrosis following long-term pressure overload via AMPKα/Smad3 signaling. Cell Death Dis. 9:1022018. View Article : Google Scholar

19 

Wang HB and Yang J, Ding JW, Chen LH, Li S, Liu XW, Yang CJ, Fan ZX and Yang J: RNAi-mediated downregulation of CD47 protects against ischemia/reperfusion-induced myocardial damage via activation of eNOS in a rat model. Cell Physiol Biochem. 40:1163–1174. 2016. View Article : Google Scholar

20 

Schorb W, Booz GW, Dostal DE, Conrad KM, Chang KC and Baker KM: Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ Res. 72:1245–1254. 1993. View Article : Google Scholar : PubMed/NCBI

21 

Toth A, Jeffers JR, Nickson P, Min JY, Morgan JP, Zambetti GP and Erhardt P: Targeted deletion of Puma attenuates cardiomyocyte death and improves cardiac function during ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 291:H52–H60. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Azhar M, Brown K, Gard C, Chen H, Rajan S, Elliott DA, Stevens MV, Camenisch TD, Conway SJ and Doetschman T: Transforming growth factor Beta2 is required for valve remod-eling during heart development. Dev Dyn. 240:2127–2141. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Takawale A, Zhang P, Patel VB, Wang X, Oudit G and Kassiri Z: Tissue inhibitor of matrix metalloproteinase-1 promotes myocardial fibrosis by mediating CD63-integrin β1 interaction. Hypertension. 69:1092–1103. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Schwartz K, de la Bastie D, Bouveret P, Oliviéro P, Alonso S and Buckingham M: Alpha-skeletal muscle actin mRNA's accumulate in hypertrophied adult rat hearts. Circ Res. 59:551–555. 1986. View Article : Google Scholar : PubMed/NCBI

25 

Deschepper CF, Masciotra S, Zahabi A, Boutin-Ganache I, Picard S and Reudelhuber TL: Functional alterations of the Nppa promoter are linked to cardiac ventricular hypertrophy in WKY/WKHA rat crosses. Circ Res. 88:223–228. 2001. View Article : Google Scholar : PubMed/NCBI

26 

Liu X, Gai Y, Liu F, Gao W, Zhang Y, Xu M and Li Z: Trimetazidine inhibits pressure overload-induced cardiac fibrosis through NADPH oxidase-ROS-CTGF pathway. Cardiovasc Res. 88:150–158. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Hu C, Dandapat A, Chen J, Fujita Y, Inoue N, Kawase Y, Jishage K, Suzuki H, Sawamura T and Mehta JL: LOX-1 deletion alters signals of myocardial remodeling immediately after ischemia-reperfusion. Cardiovasc Res. 76:292–302. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Kaur H, Takefuji M, Ngai CY, Carvalho J, Bayer J, Wietelmann A, Poetsch A, Hoelper S, Conway SJ, Möllmann H, et al: Targeted ablation of periostin-expressing activated fibroblasts prevents adverse cardiac remodeling in mice. Circ Res. 118:1906–1917. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Zhang CL, Zhao Q, Liang H, Qiao X, Wang JY, Wu D, Wu LL and Li L: Cartilage intermediate layer protein-1 alleviates pressure overload-induced cardiac fibrosis via interfering TGF-β1 signaling. J Mol Cell Cardiol. 116:135–144. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Sun L, Wang D, Li X, Zhang L, Zhang H and Zhang Y: Extracellular matrix protein ITGBL1 promotes ovarian cancer cell migration and adhesion through Wnt/PCP signaling and FAK/SRC pathway. Biomed Pharmacother. 81:145–151. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Li XQ, Du X, Li DM, Kong PZ, Sun Y, Liu PF, Wang QS and Feng YM: ITGBL1 is a Runx2 transcriptional target and promotes breast cancer bone metastasis by activating the TGFβ signaling pathway. Cancer Res. 75:3302–3313. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Wang M, Gong Q, Zhang J, Chen L, Zhang Z, Lu L, Yu D, Han Y, Zhang D, Chen P, et al: Characterization of gene expression profiles in HBV-related liver fibrosis patients and identification of ITGBL1 as a key regulator of fibrogenesis. Sci Rep. 7:434462017. View Article : Google Scholar : PubMed/NCBI

33 

Kaliakatsos M, Tzetis M, Kanavakis E, Fytili P, Chouliaras G, Karachalios T, Malizos K and Tsezou A: Asporin and knee osteoarthritis in patients of Greek origin. Osteoarthritis Cartilage. 14:609–611. 2006. View Article : Google Scholar

34 

Liu Y, Liu T, Wu J, Li T, Jiao X, Zhang H, Zhao J, Wang J, Liu L, Cao L, et al: The Correlation between FSTL1 expression and airway remodeling in asthmatics. Mediators Inflamm. 2017:79184722017. View Article : Google Scholar : PubMed/NCBI

35 

Zheng X, Qi C, Zhang S, Fang Y and Ning W: TGF-β1 induces Fstl1 via the Smad3-c-Jun pathway in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 313:L240–L251. 2017. View Article : Google Scholar

36 

Xi Y, Gong DW and Tian Z: FSTL1 as a potential mediator of exercise-induced cardioprotection in post-myocardial infarction rats. Sci Rep. 6:324242016. View Article : Google Scholar : PubMed/NCBI

37 

Schlosser A, Pilecki B, Hemstra LE, Kejling K, Kristmannsdottir GB, Wulf-Johansson H, Moeller JB, Füchtbauer EM, Nielsen O, Kirketerp-Møller K, et al: MFAP4 promotes vascular smooth muscle migration, proliferation and accelerates neointima formation. Arterioscler Thromb Vasc Biol. 36:122–133. 2016. View Article : Google Scholar

38 

Pilecki B, Schlosser A, Wulf-Johansson H, Trian T, Moeller JB, Marcussen N, Aguilar-Pimentel JA, de Angelis MH, Vestbo J, Berger P, et al: Microfibrillar-associated protein 4 modulates airway smooth muscle cell phenotype in experimental asthma. Thorax. 70:862–872. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Mölleken C, Sitek B, Henkel C, Poschmann G, Sipos B, Wiese S, Warscheid B, Broelsch C, Reiser M, Friedman SL, et al: Detection of novel biomarkers of liver cirrhosis by proteomic analysis. Hepatology. 49:1257–1266. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Vaittinen M, Kolehmainen M, Ryden M, Eskelinen M, Wabitsch M, Pihlajamäki J, Uusitupa M and Pulkkinen L: MFAP5 is related to obesity-associated adipose tissue and extracellular matrix remodeling and inflammation. Obesity (Silver Spring). 23. pp. 1371–1378. 2015, View Article : Google Scholar

41 

Enomoto Y, Matsushima S, Shibata K, Aoshima Y, Yagi H, Meguro S, Kawasaki H, Kosugi I, Fujisawa T, Enomoto N, et al: LTBP2 is secreted from lung myofibroblasts and is a potential biomarker for idiopathic pulmonary fibrosis. Clin Sci (Lond). 132:1565–1580. 2018. View Article : Google Scholar

42 

Lo PH, Tanikawa C, Katagiri T, Nakamura Y and Matsuda K: Identification of novel epigenetically inactivated gene PAMR1 in breast carcinoma. Oncol Rep. 33:267–273. 2015. View Article : Google Scholar

43 

Fischer A, Muhlhauser WWD, Warscheid B and Radziwill G: Membrane localization of acetylated CNK1 mediates a positive feedback on RAF/ERK signaling. Sci Adv. 3:e17004752017. View Article : Google Scholar : PubMed/NCBI

44 

Bestetti S, Medraño-Fernandez I, Galli M, Ghitti M, Bienert GP, Musco G, Orsi A, Rubartelli A and Sitia R: A persulfidation-based mechanism controls aquaporin-8 conductance. Sci Adv. 4:eaar57702018. View Article : Google Scholar : PubMed/NCBI

45 

Meindl A, Carvalho MR, Herrmann K, Lorenz B, Achatz H, Lorenz B, Apfelstedt-Sylla E, Wittwer B, Ross M and Meitinger T: A gene (Srpx) encoding a sushi-repeat-containing protein is deleted in patients with X-linked retinitis-pigmentosa. Hum Mol Genet. 4:2339–2346. 1995. View Article : Google Scholar : PubMed/NCBI

46 

Skuntz S, Mankoo B, Nguyen MT, Hustert E, Nakayama A, Tournier-Lasserve E, Wright CV, Pachnis V, Bharti K and Arnheiter H: Lack of the mesodermal homeodomain protein MEOX1 disrupts sclerotome polarity and leads to a remodeling of the craniocervical joints of the axial skeleton. Dev Biol. 332:383–395. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Zhang Wu B, Zhu L, Zhang YH, Zheng YE, Yang F, Guo JY, Li LY, Wang XY, Tang LJM, et al: Mesoderm/mesenchyme homeobox gene l promotes vascular smooth muscle cell phenotypic modulation and vascular remodeling. Int J Cardiol. 251:82–89. 2018. View Article : Google Scholar

48 

Pesce JT, Ramalingam TR, Wilson MS, Mentink-Kane MM, Thompson RW, Cheever AW, Urban JF Jr and Wynn TA: Retnla (relmalpha/fizz1) suppresses helminth-induced Th2-type immunity. PLoS Pathog. 5:e10003932009. View Article : Google Scholar : PubMed/NCBI

49 

Nair MG, Du Y, Perrigoue JG, Zaph C, Taylor JJ, Goldschmidt M, Swain GP, Yancopoulos GD, Valenzuela DM, Murphy A, et al: Alternatively activated macrophage-derived RELM-{alpha} is a negative regulator of type 2 inflammation in the lung. J Exp Med. 206:937–952. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Angelini DJ, Su Q, Yamaji-Kegan K, Fan C, Skinner JT, Poloczek A, El-Haddad H, Cheadle C and Johns RA: Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELMα) in chronic hypoxia- and antigen-mediated pulmonary vascular remodeling. Respir Res. 14:12013. View Article : Google Scholar

Related Articles

Journal Cover

October 2019
Volume 44 Issue 4

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wang, H., Huang, R., Yang, K., Xu, M., Fan, D., Liu, M. ... Tang, Q. (2019). Identification of differentially expressed genes and preliminary validations in cardiac pathological remodeling induced by transverse aortic constriction. International Journal of Molecular Medicine, 44, 1447-1461. https://doi.org/10.3892/ijmm.2019.4291
MLA
Wang, H., Huang, R., Yang, K., Xu, M., Fan, D., Liu, M., Huang, S., Liu, L., Wu, H., Tang, Q."Identification of differentially expressed genes and preliminary validations in cardiac pathological remodeling induced by transverse aortic constriction". International Journal of Molecular Medicine 44.4 (2019): 1447-1461.
Chicago
Wang, H., Huang, R., Yang, K., Xu, M., Fan, D., Liu, M., Huang, S., Liu, L., Wu, H., Tang, Q."Identification of differentially expressed genes and preliminary validations in cardiac pathological remodeling induced by transverse aortic constriction". International Journal of Molecular Medicine 44, no. 4 (2019): 1447-1461. https://doi.org/10.3892/ijmm.2019.4291