Open Access

Melatonin prevents sepsis-induced renal injury via the PINK1/Parkin1 signaling pathway

  • Authors:
    • Wenling Dai
    • Haifeng Huang
    • Linjie Si
    • Shi Hu
    • Liangliang Zhou
    • Lingling Xu
    • Yijun Deng
  • View Affiliations

  • Published online on: August 7, 2019     https://doi.org/10.3892/ijmm.2019.4306
  • Pages: 1197-1204
  • Copyright: © Dai et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Melatonin (N‑acetyl‑5‑methoxytryptamine; MT) has been shown to have a protective effect against sepsis‑induced renal injury, however, the mechanisms underlying the function of MT remain to be elucidated. Therefore, in the present study, the potential mechanisms underlying the preventive role of MT in sepsis‑induced renal injury were investigated. Hematoxylin and eosin staining was used to detect the effect of MT on the reduction of renal tissue damage, and immunohistochemistry (IHC), ELISA and western blot analysis were performed to determine the influence of MT on the protein expression of PTEN‑induced putative kinase 1 (PINK1), nucleotide‑oligomerization binding domain and leucine‑rich repeat pyrin domain‑containing 3 (NLRP3), apoptosis‑associated speck‑like protein containing a C‑terminal caspase recruitment domain (ASC1), interleukin (IL)‑18, IL‑1β, IL‑6 and cleaved caspase‑1. Finally, a TUNEL assay was used to compare the rate of apoptosis of renal tissues among the sham, cecal ligation and puncture (CLP), and CLP + MT groups. The extent of tissue damage in the CLP group was the highest and the extent of tissue damage in the sham group was the lowest. The IHC and western blot analysis showed that the sham group had the highest protein level of PINK1, whereas the CLP group had the lowest protein level of PINK1. By contrast, the sham group had the lowest protein level of NLRP, whereas the CLP group had the highest level of NLRP3. Furthermore, CLP treatment enhanced the protein expression of ASC1 and cleaved caspase‑1, whereas the administration of MT reduced the protein expression of ASC1 and cleaved caspase‑1 to a certain degree. Finally, the apoptotic rate was found to be the highest in the CLP group and the lowest in the sham group. Taken together, in evaluating the therapeutic effect of MT on sepsis‑induced renal injury, the results of the present study showed that MT alleviated sepsis‑induced renal injury by regulating the expression of PINK1, Parkin1, NLRP3, ASC and cleaved caspase‑1 in rats.

References

1 

Hotchkiss RS and Karl IE: The pathophysiology and treatment of sepsis. N Engl J Med. 348:138–150. 2003. View Article : Google Scholar : PubMed/NCBI

2 

Davis BK, Wen H and Ting JP: The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 29:707–735. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Lamkanfi M: Emerging inflammasome effector mechanisms. Nat Rev Immunol. 11:213–220. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Edelstein CL, Hoke TS, Somerset H, Fang W, Klein CL, Dinarello CA and Faubel S: Proximal tubules from caspase-1-deficient mice are protected against hypoxia-induced membrane injury. Nephrol Dial Transplant. 22:1052–1061. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Vilaysane A, Chun J, Seamone ME, Wang W, Chin R, Hirota S, Li Y, Clark SA, Tschopp J, Trpkov K, et al: The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol. 21:1732–1744. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Granfeldt A, Ebdrup L, Tønnesen E and Wogensen L: Renal cytokine profile in an endotoxemic porcine model. Acta Anaesthesiol Scand. 52:614–620. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Chen A, Sheu LF, Chou WY, Tsai SC, Chang DM, Liang SC, Lin FG and Lee WH: Interleukin-1 receptor antagonist modulates the progression of a spontaneously occurring IgA nephropathy in rats. Am J Kidney Dis. 30:693–702. 1997. View Article : Google Scholar : PubMed/NCBI

8 

Furuichi K, Wada T, Iwata Y, Kokubo S, Hara A, Yamahana J, Sugaya T, Iwakura Y, Matsushima K, Asano M, et al: Interleukin-1- dependent sequential chemokine expression and inflammatory cell infiltration in ischemia-reperfusion injury. Crit Care Med. 34:2447–2455. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Bani-Hani AH, Leslie JA, Asanuma H, Dinarello CA, Campbell MT, Meldrum DR, Zhang H, Hile K and Meldrum KK: IL-18 neutralization ameliorates obstruction-induced epithelial-mesenchymal transition and renal fibrosis. Kidney Int. 76:500–511. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Mulay SR, Kulkarni OP, Rupanagudi KV, Migliorini A, Darisipudi MN, Vilaysane A, Muruve D, Shi Y, Munro F, Liapis H and Anders HJ: Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. J Clin Invest. 123:236–246. 2013. View Article : Google Scholar

11 

Homsi E, Janino P and de Faria JB: Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney Int. 69:1385–1392. 2006. View Article : Google Scholar : PubMed/NCBI

12 

Allam R, Lawlor KE, Yu EC, Mildenhall AL, Moujalled DM, Lewis RS, Ke F, Mason KD, White MJ, Stacey KJ, et al: Mitochondrial apoptosis is dispensable for NLRP3 inflamma-some activation but non-apoptotic caspase-8 is required for inflammasome priming. EMBO Rep. 15:982–990. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Galano A, Tan DX and Reiter RJ: On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. J Pineal Res. 54:245–257. 2013. View Article : Google Scholar

14 

López A, García JA, Escames G, Venegas C, Ortiz F, López LC and Acuña-Castroviejo D: Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production. J Pineal Res. 46:188–198. 2009. View Article : Google Scholar

15 

Acuña Castroviejo D, López LC, Escames G, López A, García JA and Reiter RJ: Melatonin-mitochondria interplay in health and disease. Curr Top Med Chem. 11:221–240. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Crespo E, Macías M, Pozo D, Escames G, Martin M, Vives F, Guerrero JM and Acuña Castroviejo D: Melatonin inhibits expression of the inducible NO synthase II in liver and lung and prevents endotoxemia in lipopolysaccharide-induced multiple organ dysfunction syndrome in rats. FASEB J. 13:1537–1546. 1999. View Article : Google Scholar : PubMed/NCBI

17 

Escames G, López LC, Tapias V, Utrilla P, Reiter RJ, Hitos AB, León J, Rodríguez MI and Acuña Castroviejo D: Melatonin counteracts inducible mitochondrial nitric oxide synthase-dependent mitochondrial dysfunction in skeletal muscle of septic rats. J Pineal Res. 40:71–78. 2006. View Article : Google Scholar

18 

García JA, Volt H, Venegas C, Doerrier C, Escames G, López LC and Acuña Castroviejo D: Disruption of the NF-κB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-α and blocks the septic response in rats. FASEB J. 29:3863–3875. 2015. View Article : Google Scholar

19 

Rahim I, Djerdjouri B, Sayed RK, Fernández-Ortiz M, Fernández-Gil B, Hidalgo-Gutiérrez A, López LC, Escames G, Reiter RJ and Acuña-Castroviejo D: Melatonin administration to wild-type rats and nontreated NLRP3 mutant rats share similar inhibition of the inflammatory response during sepsis. J Pineal Res. 63:2017. View Article : Google Scholar

20 

Patiutko IuI, Khubiev AI, Poliakov MI, Kirsanov MI and Sorokin AI: Functional results of gastrectomy in cancer in relation to the surgical method and creation of esophago-intestinal anastomosis. Vestn Khir Im I I Grek. 143:23–26. 1989.In Russian. PubMed/NCBI

21 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

22 

Schrier RW and Wang W: Acute renal failure and sepsis. N Engl J Med. 351:159–169. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Melnikov VY, Ecder T, Fantuzzi G, Siegmund B, Lucia MS, Dinarello CA, Schrier RW and Edelstein CL: Impaired IL-18 processing protects caspase-1-deficient rats from ischemic acute renal failure. J Clin Invest. 107:1145–1152. 2001. View Article : Google Scholar : PubMed/NCBI

24 

Jimenez MF, Watson RW, Parodo J, Evans D, Foster D, Steinberg M, Rotstein OD and Marshall JC: Dysregulated expression of neutrophil apoptosis in the systemic inflammatory response syndrome. Arch Surg. 132:1263–1269. 1997. View Article : Google Scholar : PubMed/NCBI

25 

Mangan DF, Mergenhagen SE and Wahl SM: Apoptosis in human monocytes: Possible role in chronic inflammatory diseases. J Periodontol. 64:461–466. 1993.PubMed/NCBI

26 

Schroder K and Tschopp J: The inflammasomes. Cell. 140:821–832. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Bergsbaken T, Fink SL and Cookson BT: Pyroptosis: Host cell death and inflammation. Nat Rev Microbiol. 7:99–109. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Zhou R, Tardivel A, Thorens B, Choi I and Tschopp J: Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 11:136–140. 2010. View Article : Google Scholar

29 

Gringhuis SI, Kaptein TM, Wevers BA, Theelen B, van der Vlist M, Boekhout T and Geijtenbeek TB: Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat Immunol. 13:246–254. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Tamura H, Nakamura Y, Korkmaz A, Manchester LC, Tan DX, Sugino N and Reiter RJ: Melatonin and the ovary: Physiological and pathophysiological implications. Fertil Steril. 92:328–343. 2009. View Article : Google Scholar

31 

Reiter RJ, Rosales-Corral SA, Manchester LC and Tan DX: Peripheral reproductive organ health and melatonin: Ready for prime time. Int J Mol Sci. 14:7231–7272. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Siah KT, Wong RK and Ho KY: Melatonin for the treatment of irritable bowel syndrome. World J Gastroenterol. 20:2492–2498. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Schwertner A, Conceição Dos Santos CC, Costa GD, Deitos A, de Souza A, de Souza IC, Torres IL, da Cunha Filho JS and Caumo W: Efficacy of melatonin in the treatment of endometriosis: A phase II, randomized, double-blind, placebo-controlled trial. Pain. 154:874–881. 2013. View Article : Google Scholar : PubMed/NCBI

34 

de Matos Cavalcante AG, de Bruin PF, de Bruin VM, Nunes DM, Pereira ED, Cavalcante MM and Andrade GM: Melatonin reduces lung oxidative stress in patients with chronic obstructive pulmonary disease: A randomized, double-blind, placebo-controlled study. J Pineal Res. 53:238–244. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Bai XZ, He T, Gao JX, Liu Y, Liu JQ, Han SC, Li Y, Shi JH, Han JT, Tao K, et al: Melatonin prevents acute kidney injury in severely burned rats via the activation of SIRT1. Sci Rep. 6:321992016. View Article : Google Scholar : PubMed/NCBI

36 

Yildirim ME, Badem H, Cakmak M, Yilmaz H, Kosem B, Karatas OF, Bayrak R and Cimentepe E: Melatonin protects kidney against apoptosis induced by acute unilateral ureteral obstruction in rats. Cent European J Urol. 69:225–230. 2016.PubMed/NCBI

37 

Chang YC, Hsu SY, Yang CC, Sung PH, Chen YL, Huang TH, Kao GS, Chen SY, Chen KH, Chiang HJ, et al: Enhanced protection against renal ischemia-reperfusion injury with combined melatonin and exendin-4 in a rodent model. Exp Biol Med (Maywood). 241:1588–1602. 2016. View Article : Google Scholar

38 

Zhu F, Chong Lee, Shin OL, Xu H, Zhao Z, Pei G, Hu Z, Yang J, Guo Y, Mou J, Sun J, et al: Melatonin promoted renal regeneration in folic acid-induced acute kidney injury via inhibiting nucleocytoplasmic translocation of HMGB1 in tubular epithelial cells. Am J Transl Res. 9:1694–1707. 2017.PubMed/NCBI

39 

Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB and Pallanck LJ: Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA. 100:4078–4083. 2003. View Article : Google Scholar : PubMed/NCBI

40 

Narendra D, Tanaka A, Suen DF and Youle RJ: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 183:795–803. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J, LaVoie MJ and Schwarz TL: PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell. 147:893–906. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z and Zhou R: Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell. 160:62–73. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2019
Volume 44 Issue 4

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Dai, W., Huang, H., Si, L., Hu, S., Zhou, L., Xu, L., & Deng, Y. (2019). Melatonin prevents sepsis-induced renal injury via the PINK1/Parkin1 signaling pathway . International Journal of Molecular Medicine, 44, 1197-1204. https://doi.org/10.3892/ijmm.2019.4306
MLA
Dai, W., Huang, H., Si, L., Hu, S., Zhou, L., Xu, L., Deng, Y."Melatonin prevents sepsis-induced renal injury via the PINK1/Parkin1 signaling pathway ". International Journal of Molecular Medicine 44.4 (2019): 1197-1204.
Chicago
Dai, W., Huang, H., Si, L., Hu, S., Zhou, L., Xu, L., Deng, Y."Melatonin prevents sepsis-induced renal injury via the PINK1/Parkin1 signaling pathway ". International Journal of Molecular Medicine 44, no. 4 (2019): 1197-1204. https://doi.org/10.3892/ijmm.2019.4306