Open Access

Leonurus sibiricus L. ethanol extract promotes osteoblast differentiation and inhibits osteoclast formation

  • Authors:
    • Jae‑Hyun Kim
    • Minsun Kim
    • Hyuk‑Sang Jung
    • Youngjoo Sohn
  • View Affiliations

  • Published online on: July 8, 2019     https://doi.org/10.3892/ijmm.2019.4269
  • Pages: 913-926
  • Copyright: © Kim et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Leonurus sibiricus L. (LS) is a medicinal plant used in East Asia, Europe and the USA. LS is primarily used in the treatment of gynecological diseases, and recent studies have demonstrated that it exerts anti‑inflammatory and antioxidant effects. To the best of our knowledge, the present study demonstrated for the first time that LS may promote osteoblast differentiation and suppress osteoclast differentiation in vitro, and that it inhibited lipopolysaccharide (LPS)‑induced bone loss in a mouse model. LS was observed to promote the osteoblast differentiation of MC3T3‑E1 cells and upregulate the expression of runt-related transcription factor 2 (RUNX2), a key gene involved in osteoblast differentiation. This resulted in the induction of the expression of various osteogenic genes, including alkaline phosphatase (ALP), osteonectin (OSN), osteopontin (OPN), type I collagen (COL1) and bone sialoprotein (BSP). LS was also observed to inhibit osteoclast differentiation and bone resorption. The expression levels of nuclear factor of activated T‑cells 1 (NFATc1) and c‑Fos were inhibited following LS treatment. NFATc1 and c‑Fos are key markers of osteoclast differentiation that inhibit receptor activator of nuclear factor‑κΒ ligand (RANKL)‑induced mitogen‑activated protein kinase (MAPKs) and nuclear factor (NF)‑κB. As a result, LS suppressed the expression of osteoclast‑associated genes, such as matrix metallopeptidase‑9 (MMP‑9), cathepsin K (Ctsk), tartrate‑resistant acid phosphatase (TRAP), osteoclast‑associated immunoglobulin‑like receptor (OSCAR), c‑src, c‑myc, osteoclast stimulatory transmembrane protein (OC‑STAMP) and ATPase H+ transporting V0 subunit d2 (ATP6v0d2). Consistent with the in vitro results, LS inhibited the reduction in bone mineral density and the bone volume/total volume ratio in a mouse model of LPS‑induced osteoporosis. These results suggest that LS may be a valuable agent for the treatment of osteoporosis and additional bone metabolic diseases.

References

1 

Feng X and McDonald JM: Disorders of bone remodeling. Annu Rev Pathol. 6:121–145. 2011. View Article : Google Scholar

2 

Colon-Emeric CS and Saag KG: Osteoporotic fractures in older adults. Best Pract Res Clin Rheumatol. 20:695–706. 2006. View Article : Google Scholar : PubMed/NCBI

3 

Augoulea A, Tsakonas E, Triantafyllopoulos I, Rizos D, Armeni E, Tsoltos N, Tournis S, Deligeoroglou E, Antoniou A and Lambrinoudaki I: Comparative effects of denosumab or bisphosphonate treatment on bone mineral density and calcium metabolism in postmenopausal women. J Musculoskelet Neuronal Interact. 17:444–449. 2017.PubMed/NCBI

4 

Kennel KA and Drake MT: Adverse effects of bisphosphonates: Implications for osteoporosis management. Mayo Clin Proc. 84:632–637; quiz 638. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Miyazaki T, Tokimura F and Tanaka S: A review of denosumab for the treatment of osteoporosis. Patient Prefer Adhere. 8:463–471. 2014. View Article : Google Scholar

6 

Liu T, Gao Y, Sakamoto K, Minamizato T, Furukawa K, Tsukazaki T, Shibata Y, Bessho K, Komori T and Yamaguchi A: BMP-2 promotes differentiation of osteoblasts and chondroblasts in Runx2-deficient cell lines. J Cell Physiol. 211:728–735. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Komori T: Regulation of osteoblast differentiation by Runx2. Adv Exp Med Biol. 658:43–49. 2010. View Article : Google Scholar

8 

Boyce BF and Xing L: Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 473:139–146. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Kim JH and Kim N: Regulation of NFATc1 in osteoclast differentiation. J Bone Metab. 21:233–241. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Boyle WJ, Simonet WS and Lacey DL: Osteoclast differentiation and activation. Nature. 423:337–342. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Herbology Editorial Committee of Korean Medicine: Herbology Younglimsa, Seoul. 460–461. 2004.In Korean.

12 

Kim DH, Kim HM, Ryu JH, Um JY and Kim SC: Korean Medical Pharmacology. 3rd edition. Shinnil Books; Seoul: pp. 507–511. 2010, In Korean.

13 

Ju DH, Liu MJ, Zhao HY and Wang J: Mechanisms of 'kidney governing bones' theory in traditional Chinese medicine. Front Med. 8:389–393. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Oliveira AS, Cercato LM, de Santana Souza MT, Melo AJO, Lima BDS, Duarte MC and Araujo AAS: The ethanol extract of Leonurus sibiricus L. induces antioxidant, antinociceptive and topical anti-inflammatory effects. J Ethnopharmacol. 206:144–151. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Sitarek P, Rijo P, Garcia C, Skała E, Kalemba D, Białas AJ, Szemraj J, Pytel D, Toma M, Wysokińska H and Śliwiński T: Antibacterial, anti-inflammatory, antioxidant, and antiproliferative properties of essential oils from hairy and normal roots of Leonurus sibiricus L. and their chemical composition Oxid Med Cell Longev. 2017:73840612017.

16 

He YL, Shi JY, Peng C, Hu LJ, Liu J, Zhou QM, Guo L and Xiong L: Angiogenic effect of motherwort (Leonurus japonicus) alkaloids and toxicity of motherwort essential oil on zebrafish embryos. Fitoterapia. 128:36–42. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Ginaldi L, Di Benedetto MC and De Martinis M: Osteoporosis, inflammation and ageing. Immun Ageing. 2:142005. View Article : Google Scholar : PubMed/NCBI

18 

Kim JY, Cheon YH, Kwak SC, Baek JM, Yoon KH, Lee MS and Oh J: Emodin regulates bone remodeling by inhibiting osteoclastogenesis and stimulating osteoblast formation. J Bone Miner Res. 29:1541–1553. 2014. View Article : Google Scholar

19 

Kim KJ, Yeon JT, Choi SW, Moon SH, Ryu BJ, Yu R, Park SJ, Kim SH and Son YJ: Decursin inhibits osteoclastogenesis by downregulating NFATc1 and blocking fusion of pre-osteoclasts. Bone. 81:208–216. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Tschop MH, Speakman JR, Arch JR, Auwerx J, Bruning JC, Chan L, Eckel RH, Farese RV Jr, Galgani JE, Hambly C, et al: A guide to analysis of mouse energy metabolism. Nat Methods. 9:57–63. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Mizutani H, Ishihara Y, Izawa A, Fujihara Y, Kobayashi S, Gotou H, Okabe E, Takeda H, Ozawa Y, Kamiya Y, et al: Lipopolysaccharide of Aggregatibacter actinomycetemcomitans up-regulates inflammatory cytokines, prostaglandin E2 synthesis and osteoclast formation in interleukin-1 receptor antagonist-deficient mice. J Periodontal Res. 48:748–756. 2013.PubMed/NCBI

22 

Nason R, Jung JY and Chole RA: Lipopolysaccharide-induced osteoclastogenesis from mononuclear precursors: A mechanism for osteolysis in chronic otitis. J Assoc Res Otolaryngol. 10:151–160. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Kim JH, Kim EY, Lee B, Min JH, Song DU, Lim JM, Eom JW, Yeom M, Jung HS and Sohn Y: The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells. Int J Mol Med. 37:649–658. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Yang L, Liu S, Mu S, Man X, Ba G, Guo R, Li Y, Zhou L, Yang L and Fu Q: Leonurine hydrochloride promotes osteogenic differentiation and increases osteoblastic bone formation in ovariectomized mice by Wnt/β-catenin pathway. Biochem Biophys Res Commun. 504:941–948. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Wang D, Christensen K, Chawla K, Xiao G, Krebsbach PH and Franceschi RT: Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J Bone and Miner Res. 14:893–903. 1999. View Article : Google Scholar

26 

Collin-Osdoby P and Osdoby P: RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods Mol Biol. 816:187–202. 2012. View Article : Google Scholar

27 

Bills CE, Eisenberg H and Pallante SL: Complexes of organic acids with calcium phosphate: The von Kossa stain as a clue to the composition of bone mineral. Johns Hopkins Med J. 128:194–207. 1971.PubMed/NCBI

28 

Gregory CA, Gunn WG, Peister A and Prockop DJ: An Alizarin red-based assay of mineralization by adherent cells in culture: Comparison with cetylpyridinium chloride extraction. Anal Biochem. 329:77–84. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Ogasawara T, Kawaguchi H, Jinno S, Hoshi K, Itaka K, Takato T, Nakamura K and Okayama H: Bone morphogenetic protein 2-induced osteoblast differentiation requires Smadmediated down-regulation of Cdk6. Mol Cell Biol. 24:6560–6568. 2004. View Article : Google Scholar : PubMed/NCBI

30 

Jao HY, Hsu JD, Lee YR, Lo CS and Lee HJ: Mulberry water extract regulates the osteoblast/osteoclast balance in an ovariectomic rat model. Food Funct. 7:4753–4763. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Shim KS, Lee CJ, Yim NH, Gu MJ and Ma JY: Alpinia officinarum stimulates osteoblast mineralization and inhibits osteoclast differentiation. Am J Chin Med. 44:1255–1271. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Golub EE, Harrison G, Taylor AG, Camper S and Shapiro IM: The role of alkaline phosphatase in cartilage mineralization. Bone Miner. 17:273–278. 1992. View Article : Google Scholar : PubMed/NCBI

33 

Gordon JA, Tye CE, Sampaio AV, Underhill TM, Hunter GK and Goldberg HA: Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone. 41:462–473. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Morinobu M, Ishijima M, Rittling SR, Tsuji K, Yamamoto H, Nifuji A, Denhardt DT and Noda M: Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo. J Bone Miner Res. 18:1706–1715. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Huang W, Carlsen B, Rudkin G, Berry M, Ishida K, Yamaguchi DT and Miller TA: Osteopontin is a negative regulator of proliferation and differentiation in MC3T3-E1 pre-osteoblastic cells. Bone. 34:799–808. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Rosset EM and Bradshaw AD: SPARC/osteonectin in mineralized tissue. Matrix Biol. 52-54:78–87. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Delany AM, Kalajzic I, Bradshaw AD, Sage EH and Canalis E: Osteonectinnull mutation compromises osteoblast formation, maturation, and survival. Endocrinology. 144:2588–2596. 2003. View Article : Google Scholar : PubMed/NCBI

38 

Hurley MM, Abreu C, Harrison JR, Lichtler AC, Raisz LG and Kream BE: Basic fibroblast growth factor inhibits type I collagen gene expression in osteoblastic MC3T3-E1 cells. J Biol Chem. 268:5588–5593. 1993.PubMed/NCBI

39 

Hayman AR: Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity. 41:218–223. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Sheu TJ, Schwarz EM, Martinez DA, O'Keefe RJ, Rosier RN, Zuscik MJ and Puzas JE: A phage display technique identifies a novel regulator of cell differentiation. J Biol Chem. 278:438–443. 2003. View Article : Google Scholar

41 

Marchisio PC, Cirillo D, Naldini L, Primavera MV, Teti A and Zambonin-Zallone A: Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J Cell Biol. 99:1696–1705. 1984. View Article : Google Scholar : PubMed/NCBI

42 

Iotsova V, Caamano J, Loy J, Yang Y, Lewin A and Bravo R: Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med. 3:1285–1289. 1997. View Article : Google Scholar : PubMed/NCBI

43 

Miyazaki T, Katagiri H, Kanegae Y, Takayanagi H, Sawada Y, Yamamoto A, Pando MP, Asano T, Verma IM, Oda H, et al: Reciprocal role of ERK and NF-kappaB pathways in survival and activation of osteoclasts. J Cell Biol. 148:333–342. 2000. View Article : Google Scholar : PubMed/NCBI

44 

David JP, Sabapathy K, Hoffmann O, Idarraga MH and Wagner EF: JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J Cell Sci. 115:4317–4325. 2002. View Article : Google Scholar : PubMed/NCBI

45 

Matsumoto M, Kogawa M, Wada S, Takayanagi H, Tsujimoto M, Katayama S, Hisatake K and Nogi Y: Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J Biol Chem. 279:45969–45979. 2004. View Article : Google Scholar : PubMed/NCBI

46 

Matsumoto M, Sudo T, Saito T, Osada H and Tsujimoto M: Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J Biol Chem. 275:31155–31161. 2000. View Article : Google Scholar : PubMed/NCBI

47 

Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA and Wagner EF: c-Fos: A key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science. 266:443–448. 1994. View Article : Google Scholar : PubMed/NCBI

48 

Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, et al: Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 3:889–901. 2002. View Article : Google Scholar : PubMed/NCBI

49 

Sundaram K, Nishimura R, Senn J, Youssef RF, London SD and Reddy SV: RANK ligand signaling modulates the matrix metal-loproteinase-9 gene expression during osteoclast differentiation. Exp Cell Res. 313:168–178. 2007. View Article : Google Scholar

50 

Troen BR: The role of cathepsin K in normal bone resorption. Drug News Perspect. 17:19–28. 2004. View Article : Google Scholar : PubMed/NCBI

51 

Miyazaki T, Tanaka S, Sanjay A and Baron R: The role of c-Src kinase in the regulation of osteoclast function. Mod Rheumatol. 16:68–74. 2006. View Article : Google Scholar : PubMed/NCBI

52 

Battaglino R, Kim D, Fu J, Vaage B, Fu XY and Stashenko P: C-myc is required for osteoclast differentiation. J Bone and Miner Res. 17:763–773. 2002. View Article : Google Scholar

53 

Sharma SM, Bronisz A, Hu R, Patel K, Mansky KC, Sif S and Ostrowski MC: MITF and PU.1 recruit p38 MAPK and NFATc1 to target genes during osteoclast differentiation. J Biol Chem. 282:15921–15929. 2007. View Article : Google Scholar : PubMed/NCBI

54 

Kim JH, Kim K, Jin HM, Youn BU, Song I, Choi HS and Kim N: Upstream stimulatory factors regulate OSCAR gene expression in RANKL-mediated osteoclast differentiation. J Mol Biol. 383:502–511. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Choi BY, Park CH, Na YH, Bai HW, Cho JY and Chung BY: Inhibition of RANKL-induced osteoclast differentiation through the downregulation of c-Fos and NFATc1 by Eremochloa ophiuroides (centipedegrass) extract. Mol Med Rep. 13:4014–4022. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Han SY and Kim YK: Berberine suppresses RANKL-induced osteoclast differentiation by inhibiting c-fos and NFATc1 expression. Am J Chin Med. 47:439–455. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Lee SH, Rho J, Jeong D, Sul JY, Kim T, Kim N, Kang JS, Miyamoto T, Suda T, Lee SK, et al: v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat Med. 12:1403–1409. 2006. View Article : Google Scholar : PubMed/NCBI

58 

Yang M, Birnbaum MJ, MacKay CA, Mason-Savas A, Thompson B and Odgren PR: Osteoclast stimulatory transmembrane protein (OC-STAMP), a novel protein induced by RANKL that promotes osteoclast differentiation. J Cell Physiol. 215:497–505. 2008. View Article : Google Scholar

59 

Miyaura C, Inada M, Matsumoto C, Ohshiba T, Uozumi N, Shimizu T and Ito A: An essential role of cytosolic phospho-lipase A2alpha in prostaglandin E2-mediated bone resorption associated with inflammation. J Exp Med. 197:1303–1310. 2003. View Article : Google Scholar : PubMed/NCBI

60 

Welshons WV, Wolf MF, Murphy CS and Jordan VC: Estrogenic activity of phenol red. Mol Cell Endocrinol. 57:169–178. 1988. View Article : Google Scholar : PubMed/NCBI

61 

Khosla S, Oursler MJ and Monroe DG: Estrogen and the skeleton. Trends Endocrinol Metab. 23:576–581. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Geller SE and Studee L: Contemporary alternatives to plant estrogens for menopause. Maturitas. 55(Suppl 1): pp. S3–S13. 2006, View Article : Google Scholar : PubMed/NCBI

63 

Tao J, Zhang P, Liu G, Yan H, Bu X, Ma Z, Wang N, Wang G and Jia W: Cytotoxicity of Chinese motherwort (YiMuCao) aqueous ethanol extract is non-apoptotic and estrogen receptor independent on human breast cancer cells. J Ethnopharmacol. 122:234–239. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 44 Issue 3

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Kim, J., Kim, M., Jung, H., & Sohn, Y. (2019). Leonurus sibiricus L. ethanol extract promotes osteoblast differentiation and inhibits osteoclast formation. International Journal of Molecular Medicine, 44, 913-926. https://doi.org/10.3892/ijmm.2019.4269
MLA
Kim, J., Kim, M., Jung, H., Sohn, Y."Leonurus sibiricus L. ethanol extract promotes osteoblast differentiation and inhibits osteoclast formation". International Journal of Molecular Medicine 44.3 (2019): 913-926.
Chicago
Kim, J., Kim, M., Jung, H., Sohn, Y."Leonurus sibiricus L. ethanol extract promotes osteoblast differentiation and inhibits osteoclast formation". International Journal of Molecular Medicine 44, no. 3 (2019): 913-926. https://doi.org/10.3892/ijmm.2019.4269