Open Access

Astragaloside IV inhibits oxidized low‑density lipoprotein‑induced endothelial damage via upregulation of miR‑140‑3p

  • Authors:
    • Weibin Qian
    • Qiuhai Qian
    • Xinrui Cai
    • Ru Han
    • Wenjun Yang
    • Xinyue Zhang
    • Hongmin Zhao
    • Ranran Zhu
  • View Affiliations

  • Published online on: June 26, 2019     https://doi.org/10.3892/ijmm.2019.4257
  • Pages: 847-856
  • Copyright: © Qian et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Oxidized low‑density lipoprotein (ox‑LDL)‑mediated endothelial cell injury has an important role in the vascular complications of type 2 diabetes. Astragaloside IV (ASV) is an active component of Radix Astragali, which has been demonstrated to exert protective effects against endothelial damage. The present study explored whether microRNAs (miRNAs) are involved in mediating the protective effects of ASV on ox‑LDL‑induced damage in human umbilical vein endothelial cells (HUVECs). RNA sequencing and reverse transcription‑quantitative PCR analyses revealed that ox‑LDL treatment significantly downregulated miR‑140‑3p expression in HUVECs. miR‑140‑3p overexpression promoted cell proliferation and inhibited apoptosis in ox‑LDL‑induced HUVECs. However, inhibition of miR‑140‑3p expression could reverse the effects of ASV on ox‑LDL‑induced HUVECs and reactivate ASV‑inhibited PI3K/Akt signaling in ox‑LDL‑induced HUVECs. In addition, Krüppel‑like factor 4 (KLF4) was identified as a target of miR‑140‑3p in ox‑LDL‑treated HUVECs. Subsequent experiments revealed that KLF4 overexpression partially counteracted the protective effects of miR‑140‑3p or ASV treatment in ox‑LDL‑induced HUVECs. Taken together, the current findings demonstrated that the protective effects of ASV on HUVECs were dependent on miR‑140‑3p upregulation and subsequent inhibition of KLF4 expression, which in turn suppressed the PI3K/Akt signaling pathway. The present results shed light to the molecular mechanism by which ASV alleviated ox‑LDL‑induced endothelial cell damage.

References

1 

Shore AC, Colhoun HM, Natali A, Palombo C, Khan F, Östling G, Aizawa K, Kennbäck C, Casanova F, Persson M, et al: Use of vascular assessments and novel biomarkers to predict cardiovascular events in type 2 Diabetes: The SUMMIT VIP study. Diabetes Care. 41:2212–2219. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Rao Kondapally Seshasai S, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, Whincup PH, Mukamal KJ, Gillum RF, Holme I, et al: Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 364:829–841. 2011. View Article : Google Scholar

3 

Tousoulis D, Papageorgiou N, Androulakis E, Siasos G, Latsios G, Tentolouris K and Stefanadis C: Diabetes mellitus-associated vascular impairment: Novel circulating biomarkers and therapeutic approaches. J Am Coll Cardiol. 62:667–676. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Shamsaldeen YA, Ugur R, Benham CD and Lione LA: Diabetic dyslipidaemia is associated with alterations in eNOS, caveolin-1, and endothelial dysfunction in streptozotocin treated rats. Diabetes Metab Res Rev. 34:pp. e29952018, View Article : Google Scholar : PubMed/NCBI

5 

Gilbert RE: Endothelial loss and repair in the vascular complications of diabetes: Pathogenetic mechanisms and therapeutic implications. Circ J. 77:849–856. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Fu C, Yin D, Nie H and Sun D: Notoginsenoside R1 protects HUVEC against oxidized low-density lipoprotein (Ox-LDL)-induced atherogenic response via down-regulating miR-132. Cell Physiol Biochem. 51:1739–1750. 2018. View Article : Google Scholar

7 

Pollack RM, Donath MY, LeRoith D and Leibowitz G: Anti-inflammatory agents in the treatment of Diabetes and its vascular complications. Diabetes Care. 39(Suppl 2): pp. S244–S252. 2016, View Article : Google Scholar : PubMed/NCBI

8 

Song MT, Ruan J, Zhang RY, Deng J, Ma ZQ and Ma SP: Astragaloside IV ameliorates neuroinflammation-induced depressive-like behaviors in mice via the PPARγ/NF-κB/NLRP3 inflammasome axis. Acta Pharmacol Sin. 39:1559–1570. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Liu ZH, Liu HB and Wang J: Astragaloside IV protects against the pathological cardiac hypertrophy in mice. Biomed Pharmacother. 97:1468–1478. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Li M, Li H, Fang F, Deng X and Ma S: Astragaloside IV attenuates cognitive impairments induced by transient cerebral ischemia and reperfusion in mice via anti-inflammatory mechanisms. Neurosci Lett. 639:114–119. 2017. View Article : Google Scholar

11 

Qian W, Cai X, Qian Q, Zhang W and Wang D: Astragaloside IV modulates TGF-β1-dependent epithelial-mesenchymal transition in bleomycin-induced pulmonary fibrosis. J Cell Mol Med. 22:4354–4365. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Lin XP, Cui HJ, Yang AL, Luo JK and Tang T: Astragaloside IV improves vasodilatation function by regulating the PI3K/Akt/eNOS signaling pathway in rat aorta endothelial cells. J Vasc Res. 55:169–176. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Leng B, Tang F, Lu M, Zhang Z, Wang H and Zhang Y: Astragaloside IV improves vascular endothelial dysfunction by inhibiting the TLR4/NF-κB signaling pathway. Life Sci. 209:111–121. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Stępień EŁ, Durak-Kozica M, Kamińska A, Targosz-Korecka M, Libera M, Tylko G, Opalińska A, Kapusta M, Solnica B, Georgescu A, et al: Circulating ectosomes: Determination of angiogenic microRNAs in type 2 diabetes. Theranostics. 8:3874–3890. 2018. View Article : Google Scholar :

15 

Liang W, Fan T, Liu L and Zhang L: Knockdown of growth-arrest specific transcript 5 restores oxidized low-density lipoprotein-induced impaired autophagy flux via upregulating miR-26a in human endothelial cells. Eur J Pharmacol. 843:154–161. 2019. View Article : Google Scholar

16 

Yin J, Hou X and Yang S: microRNA-338-3p promotes ox-LDL-induced endothelial cell injury through targeting BAMBI and activating TGF-β/Smad pathway. J Cell Physiol. 234:11577–11586. 2019. View Article : Google Scholar

17 

Wang Y, Che J, Zhao H, Tang J and Shi G: Paeoniflorin attenuates oxidized low-density lipoprotein-induced apoptosis and adhesion molecule expression by autophagy enhancement in human umbilical vein endothelial cells. J Cell Biochem. 120:9291–9299. 2019. View Article : Google Scholar

18 

Yu S, Zhang L, Liu C, Yang J, Zhang J and Huang L: PACS2 is required for ox-LDL-induced endothelial cell apoptosis by regulating mitochondria-associated ER membrane formation and mitochondrial Ca2+ elevation. Exp Cell Res. 379:191–202. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Li B and Dewey CN: RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 12:3232011. View Article : Google Scholar : PubMed/NCBI

20 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

21 

You L, Fang Z, Shen G, Wang Q, He Y, Ye S, Wang L, Hu M, Lin Y, Liu M and Jiang A: Astragaloside IV prevents high glucose-induced cell apoptosis and inflammatory reactions through inhibition of the JNK pathway in human umbilical vein endothelial cells. Mol Med Rep. 19:1603–1612. 2019.PubMed/NCBI

22 

Ma Y, Zhao Y, Zhang R, Liang X, Yin Z, Geng Y, Shu G, Song X, Zou Y, Li L, et al: Astragaloside IV inhibits PMA-induced EPCR shedding through MAPKs and PKC pathway. Immunopharmacol Immunotoxicol. 39:148–156. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Xu C, Tang F, Lu M, Yang J, Han R, Mei M, Hu J and Wang H: Pretreatment with Astragaloside IV protects human umbilical vein endothelial cells from hydrogen peroxide induced oxidative stress and cell dysfunction via inhibiting eNOS uncoupling and NADPH oxidase-ROS-NF-κB pathway. Can J Physiol Pharmacol. 94:1132–1140. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Lin H, Pan S, Meng L, Zhou C, Jiang C, Ji Z, Chi J and Guo H: MicroRNA-384-mediated Herpud1 upregulation promotes angiotensin II-induced endothelial cell apoptosis. Biochem Biophys Res Commun. 488:453–460. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Wu CY, Zhou ZF, Wang B, Ke ZP, Ge ZC and Zhang XJ: MicroRNA-328 ameliorates oxidized low-density lipoprotein-induced endothelial cells injury through targeting HMGB1 in atherosclerosis. J Cell Biochem. 2018.

26 

Zhong X, Li P, Li J, He R, Cheng G and Li Y: Downregulation of microRNA-34a inhibits oxidized low-density lipoprotein-induced apoptosis and oxidative stress in human umbilical vein endothelial cells. Int J Mol Med. 42:1134–1144. 2018.PubMed/NCBI

27 

Li Y, Ye Y and Chen H: Astragaloside IV inhibits cell migration and viability of hepatocellular carcinoma cells via suppressing long noncoding RNA ATB. Biomed Pharmacother. 99:134–141. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Song Z, Wei D, Chen Y, Chen L, Bian Y, Shen Y, Chen J and Pan Y: Association of astragaloside IV-inhibited autophagy and mineralization in vascular smooth muscle cells with lncRNA H19 and DUSP5-mediated ERK signaling. Toxicol Appl Pharmacol. 364:45–54. 2019. View Article : Google Scholar

29 

Wei DZ, Lin C, Huang YQ, Wu LP and Huang MY: Ellagic acid promotes ventricular remodeling after acute myocardial infarction by up-regulating miR-140-3p. Biomed Pharmacother. 95:983–989. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Rasheed Z, Rasheed N and Al-Shaya O: Epigallocatechin-3-O-gallate modulates global microRNA expression in interleukin- 1β-stimulated human osteoarthritis chondrocytes: Potential role of EGCG on negative co-regulation of microRNA-140-3p and ADAMTS5. Eur J Nutr. 57:917–928. 2018. View Article : Google Scholar

31 

Wei R, Liu H, Chen R, Sheng Y and Liu T: Astragaloside IV combating liver cirrhosis through the PI3K/Akt/mTOR signaling pathway. Exp Ther Med. 17:393–397. 2019.PubMed/NCBI

32 

Tang F and Yang TL: MicroRNA-126 alleviates endothelial cells injury in atherosclerosis by restoring autophagic flux via inhibiting of PI3K/Akt/mTOR pathway. Biochem Biophys Res Commun. 495:1482–1489. 2018. View Article : Google Scholar

33 

Yi J and Gao ZF: MicroRNA-9-5p promotes angiogenesis but inhibits apoptosis and inflammation of high glucose-induced injury in human umbilical vascular endothelial cells by targeting CXCR4. Int J Biol Macromol. 130:1–9. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Kawasaki Y, Fujiki M, Uchida S, Morishige M, Momii Y and Ishii K: A single oral dose of Geranylgeranylacetone upregulates vascular endothelial growth factor and protects against Kainic acid-induced neuronal cell death: Involvement of the Phosphatidylinositol-3 kinase/Akt pathway. Pathobiology. 84:184–191. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Giordano A, Romano S, D'Angelillo A, Corcione N, Messina S, Avellino R, Biondi-Zoccai G, Ferraro P and Romano MF: Tirofiban counteracts endothelial cell apoptosis through the VEGF/VEGFR2/pAkt axis. Vasc Pharmacol. 80:67–74. 2016. View Article : Google Scholar

36 

Zhou Z, Rawnsley DR, Goddard LM, Pan W, Cao XJ, Jakus Z, Zheng H, Yang J, Arthur JS, Whitehead KJ, et al: The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression. Dev Cell. 32:168–180. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Ohnesorge N, Viemann D, Schmidt N, Czymai T, Spiering D, Schmolke M, Ludwig S, Roth J, Goebeler M and Schmidt M: Erk5 activation elicits a vasoprotective endothelial phenotype via induction of Kruppel-like factor 4 (KLF4). J Biol Chem. 285:26199–26210. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Choi H and Roh J: Role of Klf4 in the regulation of apoptosis and cell cycle in rat granulosa cells during the periovulatory period. Int J Mol Sci. 20:2018. View Article : Google Scholar

39 

Wang J, Wang B, Chen LQ, Yang J, Gong ZQ, Zhao XL, Zhang CQ and Du KL: miR-10b promotes invasion by targeting KLF4 in osteosarcoma cells. Biomed Pharmacother. 84:947–953. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Yang H, Xi X, Zhao B, Su Z and Wang Z: KLF-4 protects brain microvascular endothelial cells from ischemic stroke induced apoptosis by transcriptionally activating MALAT1. Biochem Biophys Res Commun. 495:2376–2382. 2018. View Article : Google Scholar

41 

Lv S, Ji L, Chen B, Liu S, Lei C, Liu X, Qi X, Wang Y, Lai-Han Leung E, Wang H, et al: Histone methyltransferase KMT2D sustains prostate carcinogenesis and metastasis via epigenetically activating LIFR and KLF4. Oncogene. 37:1354–1368. 2018. View Article : Google Scholar :

42 

Liu CH, Huang Q, Jin ZY, Zhu CL, Liu Z and Wang C: miR-21 and KLF4 jointly augment epithelial-mesenchymal transition via the Akt/ERK1/2 pathway. Int J Oncol. 50:1109–1115. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 44 Issue 3

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Qian, W., Qian, Q., Cai, X., Han, R., Yang, W., Zhang, X. ... Zhu, R. (2019). Astragaloside IV inhibits oxidized low‑density lipoprotein‑induced endothelial damage via upregulation of miR‑140‑3p. International Journal of Molecular Medicine, 44, 847-856. https://doi.org/10.3892/ijmm.2019.4257
MLA
Qian, W., Qian, Q., Cai, X., Han, R., Yang, W., Zhang, X., Zhao, H., Zhu, R."Astragaloside IV inhibits oxidized low‑density lipoprotein‑induced endothelial damage via upregulation of miR‑140‑3p". International Journal of Molecular Medicine 44.3 (2019): 847-856.
Chicago
Qian, W., Qian, Q., Cai, X., Han, R., Yang, W., Zhang, X., Zhao, H., Zhu, R."Astragaloside IV inhibits oxidized low‑density lipoprotein‑induced endothelial damage via upregulation of miR‑140‑3p". International Journal of Molecular Medicine 44, no. 3 (2019): 847-856. https://doi.org/10.3892/ijmm.2019.4257