Open Access

RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review)

  • Authors:
    • Yuping Liu
    • Ting Liu
    • Tiantian Lei
    • Dingding Zhang
    • Suya Du
    • Lea Girani
    • Dandan Qi
    • Chen Lin
    • Rongsheng Tong
    • Yi Wang
  • View Affiliations

  • Published online on: June 14, 2019     https://doi.org/10.3892/ijmm.2019.4244
  • Pages: 771-786
  • Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Necroptosis is a type of programmed cell death with necrotic morphology, occurring in a variety of biological processes, including inflammation, immune response, embryonic development and metabolic abnormalities. The current nomenclature defines necroptosis as cell death mediated by signal transduction from receptor‑interacting serine/threonine kinase (RIP) 1 to RIP3 (hereafter called RIP1/RIP3). However, RIP3‑dependent cell death would be a more precise definition of necroptosis. RIP3 is indispensable for necroptosis, while RIP1 is not consistently involved in the signal transduction. Notably, deletion of RIP1 even promotes RIP3‑mediated necroptosis under certain conditions. Necroptosis was previously thought as an alternate process of cell death in case of apoptosis inhibition. Currently, necroptosis is recognized to serve a pivotal role in regulating various physiological processes. Of note, it mediates a variety of human diseases, such as ischemic brain injury, immune system disorders and cancer. Targeting and inhibiting necroptosis, therefore, has the potential to be used for therapeutic purposes. To date, research has elucidated the suppression of RIP1/RIP3 via effective inhibitors and highlighted their potential application in disease therapy. The present review focused on the molecular mechanisms of RIP1/RIP3‑mediated necroptosis, explored the functions of RIP1/RIP3 in necroptosis, discussed their potential as a novel therapeutic target for disease therapy, and provided valuable suggestions for further study in this field.

References

1 

Vandenabeele P, Galluzzi L, Vanden Berghe T and Kroemer G: Molecular mechanisms of necroptosis: An ordered cellular explosion. Nat Rev Mol Cell Biol. 11:700–714. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Degterev A, Huang Z, Boyce M, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA and Yuan J: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 1:112–119. 2005. View Article : Google Scholar

3 

Christofferson DE and Yuan J: Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol. 22:263–268. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Ashkenazi A and Salvesen G: Regulated cell death: Signaling and mechanisms. Annu Rev Cell & Dev Biol. 30:337–356. 2014. View Article : Google Scholar

5 

Zhang YY and Liu H: Connections between various trigger factors and the RIP1/RIP3 signaling pathway involved in necroptosis. Asian Pac J Cancer Prev. 14:7069–7074. 2013. View Article : Google Scholar

6 

Mason AR, Elia LP and Finkbeiner S: The receptor-interacting serine/threonine protein kinase 1 (RIPK1) regulates progranulin levels. J Biol Chem. 292:3262–3272. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Stanger BZ, Leder P, Lee TH, Kim E and Seed B: RIP: A novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell. 81:513–523. 1995. View Article : Google Scholar : PubMed/NCBI

8 

Sun X, Lee J, Navas T, Baldwin DT, Stewart TA and Dixit VM: RIP3, a novel apoptosis-inducing kinase. J Biol Chem. 274:16871–16875. 1999. View Article : Google Scholar : PubMed/NCBI

9 

Newton K: RIPK1 and RIPK3: Critical regulators of inflammation and cell death. Trends Cell Biol. 25:347–353. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M and Chan FK: Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 137:1112–1123. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, Caspary T and Mocarski ES: RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature. 471:368–372. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Zhou W and Yuan J: Necroptosis in health and diseases. Semin Cell Dev Biol. 35:14–23. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Vandenabeele P, Declercq W, Van Herreweghe F and Vanden Berghe T: The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal. 3:pp. re42010, View Article : Google Scholar : PubMed/NCBI

14 

Wu XN, Yang ZH, Wang XK, Zhang Y, Wan H, Song Y, Chen X, Shao J and Han J: Distinct roles of RIP1-RIP3 hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis. Cell Death Differ. 21:1709–1720. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Wen L, Zhuang L, Luo X and Wei P: TL1A-induced NF-kappaB activation and c-IAP2 production prevent DR3-mediated apoptosis in TF-1 cells. J Biol Chem. 278:39251–39258. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Ahmad M, Srinivasula SM, Wang L, Talanian RV, Litwack G, Fernandes-Alnemri T and Alnemri ES: CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein RIP. Cancer Res. 57:615–619. 1997.PubMed/NCBI

17 

Festjens N, Vanden BT, Cornelis S and Vandenabeele P: RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death Differ. 14:400–410. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Newton K, Sun X and Dixit VM: Kinase RIP3 is dispensable for normal NF-kappa Bs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol Cell Biol. 24:1464–1469. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Sun X, Yin J, Starovasnik MA, Fairbrother WJ and Dixit VM: Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. J Biol Chem. 277:9505–9511. 2002. View Article : Google Scholar

20 

Luedde M, Lutz M, Carter N, Sosna J, Jacoby C, Vucur M, Gautheron J, Roderburg C, Brg N, Reisinger F, et al: RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc Res. 103:206–216. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Günther C, Neumann H, Neurath MF and Becker C: Apoptosis, necrosis and necroptosis: Cell death regulation in the intestinal epithelium. Gut. 62:1062–1071. 2013. View Article : Google Scholar

22 

Pasparakis M and Vandenabeele P: Necroptosis and its role in inflammation. Nature. 517:311–320. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Magnusson C and Vaux DL: Signalling by CD95 and TNF receptors: Not only life and death. Immunol Cell Biol. 77:41–46. 1999. View Article : Google Scholar : PubMed/NCBI

24 

Lan YH, Wu YC, Wu KW, Chung JG, Lu CC, Chen YL, Wu TS and Yang JS: Death receptor 5-mediated TNFR family signaling pathways modulate γ-humulene-induced apoptosis in human colorectal cancer HT29 cells. Oncol Rep. 25:419–424. 2011.

25 

Pan G, Bauer JH, Haridas V, Wang S, Liu D, Yu G, Vincenz C, Aggarwal BB, Ni J and Dixit VM: Identification and functional characterization of DR6, a novel death domain-containing TNF receptor. FEBS Lett. 431:351–356. 1998. View Article : Google Scholar : PubMed/NCBI

26 

Andera L: Signaling activated by the death receptors of the TNFR family. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 153:173–180. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Yoshikawa M, Saitoh M, Katoh T, Seki T, Bigi SV, Shimizu Y, Ishii T, Okai T, Kuno M, Hattori H, et al: Discovery of 7-Oxo-2,4,5,7-tetrahydro-6 H-pyrazolo[3,4-c]pyridine derivatives as potent, orally available, and brain-penetrating receptor interacting protein 1 (RIP1) kinase inhibitors: Analysis of structure-kinetic relationships. J Med Chem. 61:2384–2409. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Vanlangenakker N, Bertrand MJM, Bogaert P, Vandenabeele P and Berghe TV: TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis. 2:pp. e2302011, View Article : Google Scholar : PubMed/NCBI

29 

Micheau O and Tschopp J: Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 114:181–190. 2003. View Article : Google Scholar : PubMed/NCBI

30 

Wong WW, Gentle IE, Nachbur U, Anderton H, Vaux DL and Silke J: RIPK1 is not essential for TNFR1-induced activation of NF-kappaB. Cell Death Differ. 17:482–487. 2010. View Article : Google Scholar

31 

Mack C, Sickmann A, Lembo D and Brune W: Inhibition of proinflammatory and innate immune signaling pathways by a cytomegalovirus RIP1-interacting protein. Proc Natl Acad Sci USA. 105:3094–3099. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Wang L, Du F and Wang X: TNF-alpha induces two distinct caspase-8 activation pathways. Cell. 133:693–703. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Benetatos CA, Mitsuuchi Y, Burns JM, Neiman EM, Condon SM, Yu G, Seipel ME, Kapor GS, Laporte MG, Rippin SR, et al: Birinapant (TL32711), a bivalent SMAC mimetic, targets TRAF2-associated cIAPs, abrogates TNF-induced NF-κB activation, and is active in patient-derived xenograft models. Mol Can Ther. 13:867–879. 2014. View Article : Google Scholar

34 

Hughes MA, Powley IR, Jukesjones R, Horn S, Feoktistova M, Fairall L, Schwabe JW, Leverkus M, Cain K, MacFarlane M, et al: Co-operative and hierarchical binding of c-FLIP and caspase-8: A unified model defines how c-FLIP isoforms differentially control cell fate. Mol Cell. 61:834–849. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS and Green DR: Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis. Nature. 471:363–367. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Ikner A and Ashkenazi A: TWEAK induces apoptosis through a death-signaling complex comprising receptor-interacting protein 1 (RIP1), Fas-associated death domain (FADD), and caspase-8. J Biol Chem. 286:21546–21554. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Lin Y, Devin A, Rodriguez Y and Liu Z: Cleavage of the death domain kinase RIP by Caspase-8 p rompts TNF-induced apoptosis. Genes Dev. 13:2514–2526. 1999. View Article : Google Scholar : PubMed/NCBI

38 

Vanden BT, Linkermann A, Jouan-Lanhouet S, Walczak H and Vandenabeele P: Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 15:135–147. 2014. View Article : Google Scholar

39 

Li J, Mcquade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, Damko E, Moquin D, Walz T, McDermott A, et al: The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell. 150:339–350. 2012. View Article : Google Scholar : PubMed/NCBI

40 

He S, Wang L, Miao L, Wang T, Du F, Zhao L and Wang X: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 137:1100–1111. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Zhang Y, Su SS, Zhao S, Yang Z, Zhong CQ, Chen X, Cai Q, Yang ZH, Huang D, Wu R and Han J: RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun. 8:143292017. View Article : Google Scholar : PubMed/NCBI

42 

Moquin DM, Mcquade T and Chan FK: CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS One. 8:pp. e768412013, View Article : Google Scholar

43 

Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X and Wang X: Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 148:213–227. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, Hulpiau P, Weber K, Sehon CA and Marquis RW: MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 7:971–981. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS and Wang X: Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 54:133–146. 2014. View Article : Google Scholar : PubMed/NCBI

46 

Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J and Mocarski ES: Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 288:31268–31279. 2013. View Article : Google Scholar : PubMed/NCBI

47 

He S, Liang Y, Shao F and Wang X: Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci USA. 108:20054–20059. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Lu J: Regulation of necroptosis and autophagy in T cell homeostasis and function. University of California; Irvine: 2014

49 

Walsh CM: Grand challenges in cell death and survival: Apoptosis vs. necroptosis. Front Cell Dev Biol. 2:32014. View Article : Google Scholar : PubMed/NCBI

50 

Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K and Akira S: Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: Evidence for TLR4 as the Lps gene product. J Immunol. 162:3749–3752. 1999.PubMed/NCBI

51 

Takaki H, Shime H, Matsumoto M and Seya T: Tumor cell death by pattern-sensing of exogenous RNA: Tumor cell TLR3 directly induces necroptosis by poly(I:C) in vivo, independent of immune effector-mediated tumor shrinkage. Oncoimmunology. 6:pp. e10789682015, View Article : Google Scholar : PubMed/NCBI

52 

Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okab M, Takeda K and Akira S: Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 301:640–643. 2003. View Article : Google Scholar : PubMed/NCBI

53 

Kawai T, Adachi O, Ogawa T, Takeda K and Akira S: Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity. 11:115–122. 1999. View Article : Google Scholar : PubMed/NCBI

54 

Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO, Goode J, Lin P, Mann N and Mudd S: Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature. 424:743–748. 2003. View Article : Google Scholar : PubMed/NCBI

55 

Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B and Tschopp J: Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunol. 1:489–495. 2000. View Article : Google Scholar

56 

Geserick P, Hupe M, Moulin M, Wong WW, Feoktistova M, Kellert B, Gollnick H, Silke J and Leverkus M: Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. J Cell Biol. 187:1037–1054. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Robinson N, Mccomb S, Mulligan R, Dudani R, Krishnan L and Sad S: Type I interferon induces necroptosis in macrophages during infection with salmonella enterica serovar typhimurium. Nature Immunol. 13:954–962. 2012. View Article : Google Scholar

58 

Kaiser WJ, Upton JW and Mocarski ES: Viral modulation of programmed necrosis. Curr Opin Virol. 3:296–306. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Zhang Y, Chen X, Gueydan C and Han J: Plasma membrane changes during programmed cell deaths. Cell Res. 28:9–21. 2018. View Article : Google Scholar :

60 

Orozco S, Yatim N, Werner MR, Tran H, Gunja SY, Tait SW, Albert ML, Green DR and Oberst A: RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis. Cell Death Differ. 21:1511–1521. 2014. View Article : Google Scholar : PubMed/NCBI

61 

Wajant H and Scheurich P: TNFR1-induced activation of the classical NF-κB pathway. FEBS J. 278:862–876. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Jaco I, Annibaldi A, Lalaoui N, Wilson R, Tenev T, Laurien L, Kim C, Jamal K, Wicky John S, Liccardi G, et al: MK2 phosphorylates RIPK1 to prevent TNF-induced cell death. Mol Cell. 66:698–710.e5. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Kearney CJ, Cullen SP, Danielle C and Martin SJ: RIPK1 can function as an inhibitor rather than an initiator of RIPK3-dependent necroptosis. FEBS J. 281:4921–4934. 2015. View Article : Google Scholar

64 

Schenk B and Fulda S: Reactive oxygen species regulate Smac mimetic/TNFα-induced necroptotic signaling and cell death. Oncogene. 34:5796–5806. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ and Han J: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 325:332–336. 2009. View Article : Google Scholar : PubMed/NCBI

66 

Wen S, Wu X, Gao H, Yu J, Zhao W, Lu JJ, Wang J, Du G and Chen X: Cytosolic calcium mediates RIP1/RIP3 complex-dependent necroptosis through JNK activation and mitochondrial ROS production in human colon cancer cells. Free Radic Biol Med. 108:433–444. 2017. View Article : Google Scholar

67 

Kearney CJ and Martin SJ: An inflammatory perspective on necroptosis. Mol Cell. 65:965–973. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Martin SJ: Cell death and inflammation: The case for IL-1 family cytokines as the canonical DAMPs of the immune system. FEBS J. 283:2599–2615. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Kono H and Rock KL: How dying cells alert the immune system to danger. Nat Rev Immunol. 8:279–289. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Fan H, Liu F, Dong G, Ren D, Xu Y, Dou J, Wang T, Sun L and Hou Y: Activation-induced necroptosis contributes to B-cell lymphopenia in active systemic lupus erythematosus. Cell Death Dis. 5:pp. e14162014, View Article : Google Scholar : PubMed/NCBI

71 

Siegel RM: Caspases at the crossroads of immune-cell life and death. Nat Rev Immunol. 6:308–317. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Bell BD, Leverrier S, Weist BM, Newton RH, Arechiga AF, Luhrs KA, Morrissette NS and Walsh CM: FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proc Natl Acad Sci USA. 105:16677–16682. 2009. View Article : Google Scholar

73 

Lu JV and Walsh CM: Programmed necrosis and autophagy in immune function. Immunol Rev. 249:205–217. 2012. View Article : Google Scholar : PubMed/NCBI

74 

O'Donnell JA, Lehman J, Roderick JE, Martinez-Marin D, Zelic M, Doran C, Hermance N, Lyle S, Pasparakis M, Fitzgerald KA, et al: Dendritic cell RIPK1 maintains immune homeostasis by preventing inflammation and autoimmunity. J Immunol. 200:737–748. 2018. View Article : Google Scholar :

75 

Giltiay NV, Chappell CP, Sun X, Kolhatkar N, Teal TH, Wiedeman AE, Kim J, Tanaka L, Buechler MB, Hamerman JA, et al: Overexpression of TLR7 promotes cell-intrinsic expansion and autoantibody production by transitional T1B cells. J Exp Med. 210:2773–2789. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Mina-Osorio P, LaStant J, Keirstead N, Whittard T, Ayala J, Stefanova S, Garrido R, Dimaano N, Hilton H, Giron M, et al: Suppression of glomerulonephritis in lupus-prone NZB x NZW mice by RN486, a selective inhibitor of Bruton's tyrosine kinase. Arthritis Rheum. 65:2380–2391. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Biton S and Ashkenazi A: NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-α feedforward signaling. Cell. 145:92–103. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Xu C, Wu X, Zhang X, Xie Q, Fan C and Zhang H: Embryonic lethality and host immunity of relA-deficient mice are mediated by both apoptosis and necroptosis. J Immunol. 200:271–285. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Lu JV, Weist BM, van Raam BJ, Marro BS, Nguyen LV, Srinivas P, Bell BD, Luhrs KA, Lane TE, Salvesen GS and Walsh CM: Complementary roles of fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity. Proc Natl Acad Sci USA. 108:15312–15317. 2011. View Article : Google Scholar : PubMed/NCBI

80 

Zhang H, Zhou X, Mcquade T, Li J, Chan FK and Zhang J: Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature. 471:373–376. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Liu Y, Fan C, Zhang Y, Yu X, Wu X, Zhang X, Zhao Q, Zhang H, Xie Q, Li M, et al: RIP1 kinase activity-dependent roles in embryonic development of fadd-deficient mice. Cell Death Differ. 24:1459–1469. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Dillon CP, Oberst A, Weinlich R, Janke LJ, Kang TB, Ben-Moshe T, Mak TW, Wallach D and Green DR: Survival function of the FADD-CASPASE-8-cFLIP(L) complex. Cell Rep. 1:401–407. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Kaiser WJ, Daleybauer LP, Thapa RJ, Mandal P, Berger SB, Huang C, Sundararajan A, Guo H, Roback L, Speck SH, et al: RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc Natl Acad Sci USA. 111:7753–7758. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F, Gong YN, et al: RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell. 157:1189–1202. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Dowling JP, Nair A and Zhang J: A novel function of RIP1 in postnatal development and immune homeostasis by protecting against RIP3-dependent necroptosis and FADD-mediated apoptosis. Front Cell Dev Biol. 3:122015. View Article : Google Scholar : PubMed/NCBI

86 

Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, et al: Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 4:313–321. 2008. View Article : Google Scholar : PubMed/NCBI

87 

Takahashi N, Duprez L, Grootjans S, Cauwels A, Nerinckx W, DuHadaway JB, Goossens V, Roelandt R, Van Hauwermeiren F, Libert C, et al: Necrostatin-1 analogues: Critical issues on the specificity, activity andin vivouse in experimental disease models. Cell Death Dis. 3:pp. e4372012, View Article : Google Scholar

88 

Harris PA, Berger SB, Jeong JU, Nagilla R, Bandyopadhyay D, Campobasso N, Capriotti CA, Cox JA, Dare L, Dong X, et al: Discovery of a first-in-class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases. J Med Chem. 60:1247–1261. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Ren Y, Su Y, Sun L, He S, Meng L, Liao D, Liu X, Ma Y, Liu C, Li S, et al: Discovery of a highly potent, selective, and metabolically stable inhibitor of receptor-interacting protein 1 (RIP1) for the treatment of systemic inflammatory response syndrome. J Med Chem. 60:972–986. 2017. View Article : Google Scholar

90 

Martens S, Goossens V, Devisscher L, Hofmans S, Claeys P, Vuylsteke M, Takahashi N, Augustyns K and Vandenabeele P: RIPK1-dependent cell death: A novel target of the Aurora kinase inhibitor Tozasertib (VX-680). Cell Death Dis. 9:2112018. View Article : Google Scholar : PubMed/NCBI

91 

Fauster A, Rebsamen M, Huber KVM, Bigenzahn JW, Stukalov A, Lardeau CH, Scorzoni S, Bruckner M, Gridling M, Parapatics K, et al: A cellular screen identifies ponatinib and pazopanib as inhibitors of necroptosis. Cell Death Dis. 6:pp. e17672015, View Article : Google Scholar : PubMed/NCBI

92 

Alcalá AM and Flaherty KT: BRAF inhibitors for the treatment of metastatic melanoma: Clinical trials and mechanisms of resistance. Clin Cancer Res. 18:33–39. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Li JX, Feng JM, Wang Y, Li XH, Chen XX, Su Y, Shen YY, Chen Y, Xiong B, Yang CH, et al: The B-RafV600E inhibitor dabrafenib selectivelyinhibits RIP3 and alleviates acetaminophen-induced liver injury. Cell Death Dis. 5:pp. e12782014, View Article : Google Scholar

94 

Cruz SA, Qin Z, Afr S and Chen HH: Dabrafenib, an inhibitor of RIP3 kinase-dependent necroptosis, reduces ischemic brain injury. Neural Regen Res. 13:252–256. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Omoto S, Guo H, Talekar GR, Roback L, Kaiser WJ and Mocarski ES: Suppression of RIP3-dependent necroptosis by human cytomegalovirus. J Biol Chem. 290:11635–11648. 2015. View Article : Google Scholar : PubMed/NCBI

96 

Liu J, Mil AV, Vrijsen K, Zhao J, Gao L, Metz CH, Goumans MJ, Doevendans PA and Sluijter JP: MicroRNA-155 prevents necrotic cell death in human cardiomyocyte progenitor cells via targeting RIP1. J Cell Mol Med. 15:1474–1482. 2011. View Article : Google Scholar

97 

Dhingra R, Lin J and Kirshenbaum LA: Disruption of RIP1-FADD complexes by microRNA-103/107 provokes necrotic cardiac cell death. Circ Res. 117:314–316. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Wang JX, Zhang XJ, Li Q, Wang K, Wang Y, Jiao JQ, Feng C, Teng S, Zhou LY, Gong Y, et al: MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD. Circ Res. 117:352–363. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Wo L, Lu D and Gu X: Knockdown of miR-182 promotes apoptosis via regulating RIP1 deubiquitination in TNF-α-treated triple-negative breast cancer cells. Tumour Biol. 37:13733–13742. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Zheng M, Wu Z, Wu A, Huang Z, He N and Xie X: MiR-145 promotes TNF-α-induced apoptosis by facilitating the formation of RIP1-FADDcaspase-8 complex in triple-negative breast cancer. Tumor Biol. 37:8599–8607. 2016. View Article : Google Scholar

101 

Li D, Xu T, Cao Y, Wang H, Li L, Chen S, Wang X and Shen Z: A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis. Proc Natl Acad Sci USA. 112:5017–5022. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Li D, Li C, Li L, Chen S, Wang L, Li Q, Wang X, Lei X and Shen Z: Natural product kongensin a is a non-canonical HSP90 inhibitor that blocks RIP3-dependent necroptosis. Cell Chem Biol. 23:257–266. 2016. View Article : Google Scholar : PubMed/NCBI

103 

Jacobsen AV, Lowes KN, Tanzer MC, Lucet IS, Hildebrand JM, Petrie EJ, van Delft MF, Liu Z, Conos SA, Zhang JG, et al: HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death. Cell Death Dis. 7:pp. e20512016, View Article : Google Scholar : PubMed/NCBI

104 

Zhao XM, Chen Z, Zhao JB, Zhang PP, Pu YF, Jiang SH, Hou JJ, Cui YM, Jia XL and Zhang SQ: Hsp90 modulates the stability of MLKL and is required for TNF-induced necroptosis. Cell Death Dis. 7:pp. e20892016, View Article : Google Scholar : PubMed/NCBI

105 

Park SY, Shim JH, Chae JI and Cho YS: Heat shock protein 90 inhibitor regulates necroptotic cell death via down-regulation of receptor interacting proteins. Pharmazie. 70:193–198. 2015.PubMed/NCBI

106 

Declercq W, Vanden BT and Vandenabeele P: RIP kinases at the crossroads of cell death and survival. Cell. 138:229–232. 2009. View Article : Google Scholar : PubMed/NCBI

107 

Chan FK, Luz NF and Moriwaki K: Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol. 33:79–106. 2015. View Article : Google Scholar :

108 

Ariana A: Dissection of TLR4-Induced Necroptosis Using Specific Inhibitors of Endocytosis and P38 MAPK. Department of Biochemistry, Microbiology and Immunology University of Ottawa; Ottawa, Canada: 2017

109 

Upton JW, Kaiser WJ and Mocarski ES: DAI complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe. 11:290–297. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Gupta K, Phan N, Wang Q and Liu B: Necroptosis in cardiovascular disease-a new therapeutic target. J Mol Cell Cardiol. 118:26–35. 2018. View Article : Google Scholar : PubMed/NCBI

111 

Lin J, Li H, Yang M, Ren J, Huang Z, Han F, Huang J, Ma J, Zhang D, Zhang Z, et al: A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep. 3:200–210. 2013. View Article : Google Scholar : PubMed/NCBI

112 

Meng L, Jin W and Wang X: RIP3-mediated necrotic cell death accelerates systematic inflammation and mortality. Proc Natl Acad Sci USA. 112:11007–11012. 2015. View Article : Google Scholar : PubMed/NCBI

113 

Zhang Y, Cheng J, Zhang J, Wu X, Chen F, Ren X, Wang Y, Li Q and Li Y: Proteasome inhibitor PS-341 limits macrophage necroptosis by promoting cIAPs-mediated inhibition of RIP1 and RIP3 activation. Biochem Biophys Res Commun. 477:761–767. 2016. View Article : Google Scholar : PubMed/NCBI

114 

Oerlemans MI, Liu J, Arslan F, den Ouden K, van Middelaar BJ, Doevendans PA and Sluijter JP: Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res Cardiol. 107:2702012. View Article : Google Scholar : PubMed/NCBI

115 

Zhu P, Hu S, Jin Q, Li D, Tian F, Toan S, Li Y, Zhou H and Chen Y: Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: A mechanism involving calcium overload/XO/ROS/mPTP pathway. Redox Biol. 16:157–168. 2018. View Article : Google Scholar : PubMed/NCBI

116 

Zhao M, Qin Y, Lu L, Tang X, Wu W, Fu H and Liu X: Preliminary study of necroptosis in cardiac hypertrophy induced by pressure overload. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 32:618–623. 2015.In Chinese. PubMed/NCBI

117 

Zhang L, Feng Q and Wang T: Necrostatin-1 protects against paraquat-induced cardiac contractile dysfunction via RIP1-RIP3-MLKL-dependent necroptosis pathway. Cardiovasc Toxicol. 18:346–355. 2018. View Article : Google Scholar : PubMed/NCBI

118 

Meng MB, Wang HH, Cui YL, Wu ZQ, Shi YY, Zaorsky NG, Deng L, Yuan ZY, Lu Y and Wang P: Necroptosis in tumori-genesis, activation of anti-tumor immunity, and cancer therapy. Oncotarget. 7:57391–57413. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Chen D, Yu J and Zhang L: Necroptosis: An alternative cell death program defending against cancer. Biochim Biophys Acta. 1865:228–236. 2016.PubMed/NCBI

120 

Yang Y, Hu W, Feng S, Ma J and Wu M: RIP3 beta and RIP3 gamma, two novel splice variants of receptor-interacting protein 3 (RIP3), downregulate RIP3-induced apoptosis. Biochem Biophys Res Commun. 332:181–187. 2005. View Article : Google Scholar : PubMed/NCBI

121 

Kasof GM, Prosser JC, Liu D, Lorenzi MV and Gomes BC: The RIP-like kinase, RIP3, induces apoptosis and NF-kappaB nuclear translocation and localizes to mitochondria. FEBS Lett. 473:285–291. 2000. View Article : Google Scholar : PubMed/NCBI

122 

Wu W, Liu P and Li J: Necroptosis: An emerging form of programmed cell death. Crit Rev Oncol Hematol. 82:249–258. 2012. View Article : Google Scholar

123 

Cabal-Hierro L and O'Dwyer PJ: TNF signaling through RIP1 kinase enhances SN38-induced death in colon adenocarcinoma. Mol Cancer Res. 15:395–404. 2017. View Article : Google Scholar : PubMed/NCBI

124 

Xin J, You D, Breslin P, Li J, Zhang J, Wei W, Cannova J, Volk A, Gutierrez R, Xiao Y, et al: Sensitizing acute myeloid leukemia cells to induced differentiation by inhibiting the RIP1/RIP3 pathway. Leukemia. 124:1154–1165. 2017. View Article : Google Scholar

125 

Li Y, Liu X, Gong P and Tian X: Bufalin inhibits human breast cancer tumorigenesis by inducing cell death through the ROS-Mediated RIP1/RIP3/PARP-1 pathways. Carcinogenesis. 39:700–707. 2018. View Article : Google Scholar : PubMed/NCBI

126 

Larocca TJ, Sosunov SA, Shakerley NL, Ten VS and Ratner AJ: Hyperglycemic conditions prime cells for RIP1-dependent necroptosis. J Biol Chem. 291:13753–13761. 2016. View Article : Google Scholar : PubMed/NCBI

127 

Mccaig WD, Patel PS, Sosunov SA, Shakerley NL, Smiraglia TA, Craft MM, Walker KM, Deragon MA, Ten VS and LaRocca TJ: Hyperglycemia potentiates a shift from apoptosis to RIP1-dependent necroptosis. Cell Death Discov. 4:552018. View Article : Google Scholar : PubMed/NCBI

128 

Wang K, Hu L and Chen JK: RIP3-deficience attenuates potassium oxonate-induced hyperuricemia and kidney injury. Biomed Pharmacother. 101:617–626. 2018. View Article : Google Scholar : PubMed/NCBI

129 

Dara L, Liu ZX and Kaplowitz N: Questions and controversies: The role of necroptosis in liver disease. Cell Death Discov. 2:160892016. View Article : Google Scholar : PubMed/NCBI

130 

Deutsch M, Graffeo CS, Rokosh R, Pansari M, Ochi A, Levie EM, Van Heerden E, Tippens DM, Tippens DM, Greco S, et al: Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury. Cell Death Dis. 6:pp. e17592015, View Article : Google Scholar : PubMed/NCBI

131 

Zhang YF, He W, Zhang C, Liu XJ, Lu Y, Wang H, Zhang ZH, Chen X and Xu DX: Role of receptor interacting protein (RIP)1 on apoptosis-inducing factor-mediated necroptosis during acetaminophen-evoked acute liver failure in mice. Toxicol Lett. 225:445–453. 2014. View Article : Google Scholar : PubMed/NCBI

132 

Ramachandran A, McGill MR, Xie Y, Ni HM, Ding WX and Jaeschke H: Receptor interacting protein kinase 3 is a critical early mediator of acetaminophen-induced hepatocyte necrosis in mice. Hepatology. 58:2099–2108. 2013. View Article : Google Scholar : PubMed/NCBI

133 

Roychowdhury S, McMullen MR, Pisano SG, Liu X and Nagy LE: Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology. 57:1773–1783. 2013. View Article : Google Scholar : PubMed/NCBI

134 

Wang S, Ni HM, Dorko K, Kumer SC, Schmitt TM, Nawabi A, Komatsu M, Huang H and Ding WX: Increased hepatic receptor interacting protein kinase 3 expression due to impaired protea-somal functions contributes to alcohol-induced steatosis and liver injury. Oncotarget. 7:17681–17698. 2016.PubMed/NCBI

135 

Afonso MB, Rodrigues PM, Carvalho T, Caridade M, Borralho P, Cortez-Pinto H, Castro RE and Rodrigues CM: Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis. Clin Sci (Lond). 129:pp. 721–739. 2015, View Article : Google Scholar

136 

Choi HS, Kang JW and Lee SM: Melatonin attenuates carbon tetrachloride-induced liver fibrosis via inhibition of necroptosis. Transl Res. 166:292–303. 2015. View Article : Google Scholar : PubMed/NCBI

137 

Linkermann A, Brasen JH, Himmerkus N, Liu S, Huber TB, Kunzendorf U and Krautwald S: Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury. Kidney Int. 81:751–761. 2012. View Article : Google Scholar : PubMed/NCBI

138 

Linkermann A, Brasen JH, Darding M, Jin MK, Sanz AB, Heller JO, De Zen F, Weinlich R, Ortiz A, Walczak H, et al: Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci USA. 110:12024–12029. 2013. View Article : Google Scholar : PubMed/NCBI

139 

Xu Y, Ma H, Shao J, Wu J, Zhou L, Zhang Z, Wang Y, Huang Z, Ren J, Liu S, et al: A role for tubular necroptosis in cisplatin-induced AKI. J Am Soc Nephrol. 26:2647–2658. 2015. View Article : Google Scholar : PubMed/NCBI

140 

Xiao X, Du C, Yan Z, Shi Y, Duan H and Ren Y: Inhibition of necroptosis attenuates kidney inflammation and interstitial fibrosis induced by unilateral ureteral obstruction. Am J Nephrol. 46:131–138. 2017. View Article : Google Scholar : PubMed/NCBI

141 

Murakami Y, Trichonas G, Thanos A, Mantopulos D, Morizane Y, Kayama M, Hisatomi T, Miller J and Vavvas D: The role of RIP-mediated necrosis and autophagy in photoreceptor death after retinal detachment. Invest Ophthalmol Vis Sci. 52:65882011.

142 

Trichonas G, Murakami Y, Thanos A, Morizane Y, Kayama M, Debouck CM, Hisatomi T, Miller JW and Vavvas DG: Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. Proc Natl Acad Sci USA. 107:21695–21700. 2010. View Article : Google Scholar : PubMed/NCBI

143 

Murakami Y, Ikeda Y, Nakatake S, Miller JW, Vavvas DG, Sonoda KH and Ishibashi T: Necrotic cone photoreceptor cell death in retinitis pigmentosa. Cell Death Dis. 6:pp. e20382015, View Article : Google Scholar

144 

Murakami Y, Matsumoto H, Roh M, Suzuki J, Hisatomi T, Ikeda Y, Miller JW and Vavvas DG: Receptor interacting protein kinase mediates necrotic cone but not rod cell death in a mouse model of inherited degeneration. Proc Natl Acad Sci USA. 109:14598–14603. 2012. View Article : Google Scholar : PubMed/NCBI

145 

Sato K, Li S, Gordon WC, He J, Liou GI, Hill JM, Travis GH, Bazan NG and Jin M: Receptor interacting protein kinase-mediated necrosis contributes to cone and rod photoreceptor degeneration in the retina lacking interphotoreceptor retinoid-binding protein. J Neurosci. 33:17458–17468. 2013. View Article : Google Scholar : PubMed/NCBI

146 

Kataoka K, Matsumoto H, Kaneko H, Notomi S, Takeuchi K, Sweigard JH, Atik A, Murakami Y, Connor KM, Terasaki H, et al: Macrophage- and RIP3-dependent inflammasome activation exacerbates retinal detachment-induced photoreceptor cell death. Cell Death Dis. 6:pp. e17312015, View Article : Google Scholar : PubMed/NCBI

147 

Ito Y, Ofengeim D, Najafov A, Das S, Saberi S, Li Y, Hitomi J, Zhu H, Chen H, Mayo L, et al: RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science. 353:603–608. 2016. View Article : Google Scholar : PubMed/NCBI

148 

Hébert MJ and Jevnikar AM: The impact of regulated cell death pathways on alloimmune responses and graft injury. Curr Transpl Rep. 2:242–258. 2015. View Article : Google Scholar

149 

Lau A, Wang S, Jiang J, Haig A, Pavlosky A, Linkermann A, Zhang ZX and Jevnikar AM: RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival. Am J Transplant. 13:2805–2818. 2013. View Article : Google Scholar : PubMed/NCBI

150 

Becker DS: Toxic epidermal necrolysis. Lancet. 351:1417–1420. 1998. View Article : Google Scholar : PubMed/NCBI

151 

Kim SK, Kim WJ, Yoon JH, Ji JH, Morgan MJ, Cho H, Kim YC and Kim YS: Upregulated RIP3 expression potentiates MLKL phosphorylation-mediated programmed necrosis in toxic epidermal necrolysis. J Investi Dermatol. 135:2021–2030. 2015. View Article : Google Scholar

Related Articles

Journal Cover

September 2019
Volume 44 Issue 3

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, Y., Liu, T., Lei, T., Zhang, D., Du, S., Girani, L. ... Wang, Y. (2019). RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review). International Journal of Molecular Medicine, 44, 771-786. https://doi.org/10.3892/ijmm.2019.4244
MLA
Liu, Y., Liu, T., Lei, T., Zhang, D., Du, S., Girani, L., Qi, D., Lin, C., Tong, R., Wang, Y."RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review)". International Journal of Molecular Medicine 44.3 (2019): 771-786.
Chicago
Liu, Y., Liu, T., Lei, T., Zhang, D., Du, S., Girani, L., Qi, D., Lin, C., Tong, R., Wang, Y."RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review)". International Journal of Molecular Medicine 44, no. 3 (2019): 771-786. https://doi.org/10.3892/ijmm.2019.4244