GLP‑1 improves palmitate‑induced insulin resistance in human skeletal muscle via SIRT1 activity

  • Authors:
    • Ja Young Jeon
    • Sung‑E Choi
    • Eun Suk Ha
    • Han Byeol Lee
    • Tae Ho Kim
    • Seung Jin Han
    • Hae Jin Kim
    • Dae Jung Kim
    • Yup Kang
    • Kwan‑Woo Lee
  • View Affiliations

  • Published online on: July 9, 2019     https://doi.org/10.3892/ijmm.2019.4272
  • Pages: 1161-1171
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The present study investigated whether glucagon like peptide‑1 (GLP‑1) improves glucose uptake through glucose transporter type 4 (GLUT4), mediated by the activation of sirtuin 1 (SIRT1), in skeletal muscle cells with palmitate induced‑insulin resistance. The levels of glucose uptake, GLUT4, protein kinase A (PKA), and cyclic adenosine monophosphate (cAMP) were determined in human skeletal muscle myotubes (HSMMs) exposed to palmitate and GLP‑1. Then, to determine whether PKA/cAMP were downstream signals of GLP‑1, a PKA inhibitor was used. To determine whether SIRT‑1 contributes to GLP‑1 action in HSMMs with palmitate‑induced insulin resistance, the levels of peroxisome proliferator‑activated receptor γ coactivator 1α (PGC1α) deacetylation and SIRT‑1 activity were assessed using a SIRT1 inhibitor and small interfering RNA (siRNA). The phosphorylation levels of protein kinase B (Akt) and insulin receptor substrate 1 (IRS‑1) as insulin signaling pathways, were assessed in GLP‑1‑treated HSMMs exposed to palmitate. The influence of SIRT1 on the GLP‑1‑induced activation of insulin signaling pathway was determined using a SIRT1 inhibitor. GLP‑1 restored the palmitate‑induced reductions in the levels of glucose uptake, GLUT4 mRNA, GLUT4 promoter activity, and GLUT4 protein in HSMMs. PKA and cAMP, as GLP‑1 downstream signals, played a role in this process. GLP‑1 increased the deacetylation levels of PGC1α, and stimulated SIRT1 in HSMMs. Moreover, the SIRT1 inhibitor and siRNA of SIRT1 suppressed the effect of GLP‑1 on GLUT4 expression in HSMMs exposed to palmitate. The SIRT1 inhibitor also prevented the GLP‑1‑induced phosphorylation of IRS‑1 and Akt in palmitate‑treated HSMMs. The present findings suggest that in palmitate‑induced insulin‑resistant HSMM, GLP‑1 activates SIRT1 through the PKA/cAMP pathway, which in turn enhances glucose uptake through GLUT4 and the insulin signaling pathway.

References

1 

DeFronzo RA and Del Prato S: Insulin resistance and diabetes mellitus. J Diabetes Complications. 10:243–245. 1996. View Article : Google Scholar : PubMed/NCBI

2 

Boden G: Free fatty acids (FFA), a link between obesity and insulin resistance. Front Biosci. 3:d169–d175. 1998. View Article : Google Scholar : PubMed/NCBI

3 

Minamino T, Komuro I and Kitakaze M: Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease. Circ Res. 107:1071–1082. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Yuzefovych L, Wilson G and Rachek L: Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: Role of oxidative stress. Am J Physiol Endocrinol Metab. 299:E1096–E1105. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Dasu MR and Jialal I: Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptors. Am J Physiol Endocrinol Metab. 300:E145–E154. 2011. View Article : Google Scholar :

6 

Jung JG, Choi SE, Hwang YJ, Lee SA, Kim EK, Lee MS, Han SJ, Kim HJ, Kim DJ, Kang Y and Lee KW: Supplementation of pyruvate prevents palmitate-induced impairment of glucose uptake in C2 myotubes. Mol Cell Endocrinol. 345:79–87. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Lee MS, Choi SE, Ha ES, An SY, Kim TH, Han SJ, Kim HJ, Kim DJ, Kang Y and Lee KW: Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-kB. Metabolism. 61:1142–1151. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Nauck MA and Meier JJ: Incretin hormones: Their role in health and disease. Diabetes Obes Metab. 20(Suppl 1): S5–S21. 2018. View Article : Google Scholar

9 

Acitores A, Gonzalez N, Sancho V, Valverde I and Villanueva-Penacarrillo ML: Cell signalling of glucagon-like peptide-1 action in rat skeletal muscle. J Endocrinol. 180:389–398. 2004. View Article : Google Scholar : PubMed/NCBI

10 

D'Alessio DA, Prigeon RL and Ensinck JW: Enteral enhancement of glucose disposition by both insulin-dependent and insulin-independent processes. A physiological role of glucagon-like peptide I Diabetes. 44:1433–1437. 1995.

11 

Giannocco G, Oliveira KC, Crajoinas RO, Venturini G, Salles TA, Fonseca-Alaniz MH, Maciel RM and Girardi AC: Dipeptidyl peptidase IV inhibition upregulates GLUT4 translocation and expression in heart and skeletal muscle of spontaneously hypertensive rats. Eur J Pharmacol. 698:74–86. 2013. View Article : Google Scholar

12 

Banks AS, Kon N, Knight C, Matsumoto M, Gutiérrez-Juárez R, Rossetti L, Gu W and Accili D: SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 8:333–341. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Feige JN, Lagouge M, Canto C, Strehle A, Houten SM, Milne JC, Lambert PD, Mataki C, Elliott PJ and Auwerx J: Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 8:347–358. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Gerhart-Hines Z, Dominy JE Jr, Blattler SM, Jedrychowski MP, Banks AS, Lim JH, Chim H, Gygi SP and Puigserver P: The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+). Mol Cell. 44:851–863. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Lim JH, Gerhart-Hines Z, Dominy JE, Lee Y, Kim S, Tabata M, Xiang YK and Puigserver P: Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1α complex. J Biol Chem. 288:7117–7126. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Xu F, Li Z, Zheng X, Liu H, Liang H, Xu H, Chen Z, Zeng K and Weng J: SIRT1 mediates the effect of GLP-1 receptor agonist exenatide on ameliorating hepatic steatosis. Diabetes. 63:3637–3646. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Lee J, Hong SW, Chae SW, Kim DH, Choi JH, Bae JC, Park SE, Rhee EJ, Park CY, Oh KW, et al: Exendin-4 improves steato-hepatitis by increasing Sirt1 expression in high-fat diet-induced obese C57BL/6J mice. PLoS One. 7:e313942012. View Article : Google Scholar

18 

Lee J, Hong SW, Park SE, Rhee EJ, Park CY, Oh KW, Park SW and Lee WY: Exendin-4 attenuates endoplasmic reticulum stress through a SIRT1-dependent mechanism. Cell Stress Chaperones. 19:649–656. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Bastien-Dionne PO, Valenti L, Kon N, Gu W and Buteau J: Glucagon-like peptide 1 inhibits the sirtuin deacetylase SirT1 to stimulate pancreatic β-cell mass expansion. Diabetes. 60:3217–3222. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, Hansen BC, Shanafelt AB and Etgen GJ: The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology. 148:774–781. 2007. View Article : Google Scholar

21 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

22 

Nemoto S, Fergusson MM and Finkel T: SIRT1 functionally interacts with the metabolic regulator and transcriptional coacti-vator PGC-1{alpha}. J Biol Chem. 280:16456–16460. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Houtkooper RH, Canto C, Wanders RJ and Auwerx J: The secret life of NAD+: An old metabolite controlling new metabolic signaling pathways. Endocr Rev. 31:194–223. 2010. View Article : Google Scholar :

24 

Holz GG: Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes. 53:5–13. 2004. View Article : Google Scholar

25 

Luque MA, Gonzalez N, Marquez L, Acitores A, Redondo A, Morales M, Valverde I and Villanueva-Peñacarrillo ML: Glucagon-like peptide-1 (GLP-1) and glucose metabolism in human myocytes. J Endocrinol. 173:465–473. 2002. View Article : Google Scholar : PubMed/NCBI

26 

D'Alessio DA, Kahn SE, Leusner CR and Ensinck JW: Glucagon-like peptide 1 enhances glucose tolerance both by stimulation of insulin release and by increasing insulin-independent glucose disposal. J Clin Invest. 93:2263–2266. 1994. View Article : Google Scholar : PubMed/NCBI

27 

Egan JM, Montrose-Rafizadeh C, Wang Y, Bernier M and Roth J: Glucagon-like peptide-1(7-36) amide (GLP-1) enhances insulin-stimulated glucose metabolism in 3T3-L1 adipocytes: One of several potential extrapancreatic sites of GLP-1 action. Endocrinology. 135:2070–2075. 1994. View Article : Google Scholar : PubMed/NCBI

28 

Miki H, Namba M, Nishimura T, Mineo I, Matsumura T, Miyagawa J, Nakajima H, Kuwajima M, Hanafusa T and Matsuzawa Y: Glucagon-like peptide-1(7-36)amide enhances insulin-stimulated glucose uptake and decreases intracellular cAMP content in isolated rat adipocytes. Biochim Biophys Acta. 1312:132–136. 1996. View Article : Google Scholar : PubMed/NCBI

29 

Green CJ, Henriksen TI, Pedersen BK and Solomon TP: Glucagon like peptide-1-induced glucose metabolism in differentiated human muscle satellite cells is attenuated by hyperglycemia. PLoS One. 7:e442842012. View Article : Google Scholar : PubMed/NCBI

30 

Arnes L, Gonzalez N, Tornero-Esteban P, Sancho V, Acitores A, Valverde I, Delgado E and Villanueva-Peñacarrillo ML: Characteristics of GLP-1 and exendins action upon glucose transport and metabolism in type 2 diabetic rat skeletal muscle. Int J Mol Med. 22:127–132. 2008.PubMed/NCBI

31 

Li Z, Ni CL, Yao Z, Chen LM and Niu WY: Liraglutide enhances glucose transporter 4 translocation via regulation of AMP-activated protein kinase signaling pathways in mouse skeletal muscle cells. Metabolism. 63:1022–1030. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Sjøberg KA, Holst JJ, Rattigan S, Richter EA and Kiens B: GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle. Am J Physiol Endocrinol Metab. 306:E355–E362. 2014. View Article : Google Scholar :

33 

Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM and Puigserver P: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 434:113–118. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Yu J and Auwerx J: The role of sirtuins in the control of metabolic homeostasis. Ann N Y Acad Sci. 1173(Suppl 1): E10–E19. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Quiñones M, Al-Massadi O, Fernø J and Nogueiras R: Cross-talk between SIRT1 and endocrine factors: Effects on energy homeo-stasis. Mol Cell Endocrinol. 397:42–50. 2014. View Article : Google Scholar

36 

Li Z, Zhu Y, Li C, Tang Y, Jiang Z, Yang M, Ni CL, Li D, Chen L and Niu W: Liraglutide ameliorates palmitate-induced insulin resistance through inhibiting the IRS-1 serine phosphorylation in mouse skeletal muscle cells. J Endocrinol Invest. 41:1097–1102. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Gonzalez N, Acitores A, Sancho V, Valverde I and Villanueva-Penacarrillo ML: Effect of GLP-1 on glucose transport and its cell signalling in human myocytes. Regul Pept. 126:203–211. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Egan JM, Meneilly GS, Habener JF and Elahi D: Glucagon-like peptide-1 augments insulin-mediated glucose uptake in the obese state. J Clin Endocrinol Metab. 87:3768–3773. 2002. View Article : Google Scholar : PubMed/NCBI

39 

Zander M, Madsbad S, Madsen JL and Holst JJ: Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: A parallel-group study. Lancet. 359:824–830. 2002. View Article : Google Scholar : PubMed/NCBI

40 

Seghieri M, Rebelos E, Gastaldelli A, Astiarraga BD, Casolaro A, Barsotti E, Pocai A, Nauck M, Muscelli E and Ferrannini E: Direct effect of GLP-1 infusion on endogenous glucose production in humans. Diabetologia. 56:156–161. 2013. View Article : Google Scholar

41 

Sandhu H, Wiesenthal SR, MacDonald PE, McCall RH, Tchipashvili V, Rashid S, Satkunarajah M, Irwin DM, Shi ZQ, Brubaker PL, et al: Glucagon-like peptide 1 increases insulin sensitivity in depancreatized dogs. Diabetes. 48:1045–1053. 1999. View Article : Google Scholar : PubMed/NCBI

42 

Yang H, Egan JM, Wang Y, Moyes CD, Roth J, Montrose MH and Montrose-Rafizadeh C: GLP-1 action in L6 myotubes is via a receptor different from the pancreatic GLP-1 receptor. Am J Physiol. 275:C675–C683. 1998. View Article : Google Scholar : PubMed/NCBI

43 

Houtkooper RH, Pirinen E and Auwerx J: Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 13:225–238. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Yonamine CY, Pinheiro-Machado E, Michalani ML, Alves-Wagner AB, Esteves JV, Freitas HS and Machado UF: Resveratrol improves glycemic control in Type 2 diabetic obese mice by regulating glucose transporter expression in skeletal muscle and liver. Molecules. 22:pii: E1180. 2017.PubMed/NCBI

45 

Fehmann HC, Jiang J, Pitt D, Schweinfurth J and Goke B: Ligand-induced regulation of glucagon-like peptide-I receptor function and expression in insulin-secreting beta cells. Pancreas. 13:273–282. 1996. View Article : Google Scholar : PubMed/NCBI

46 

Liu L, Liu J, Wong WT, Tian XY, Lau CW, Wang YX, Xu G, Pu Y, Zhu Z, Xu A, et al: Dipeptidyl peptidase 4 inhibitor sita-gliptin protects endothelial function in hypertension through a glucagon-like peptide 1-dependent mechanism. Hypertension. 60:833–841. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Jo S, Chen J, Xu G, Grayson TB, Thielen LA and Shalev A: miR-204 controls glucagon-like peptide 1 receptor expression and agonist function. Diabetes. 67:256–264. 2018. View Article : Google Scholar :

48 

Kimura T, Obata A, Shimoda M, Okauchi S, Hirukawa H, Kohara K, Kinoshita T, Nogami Y, Nakanishi S, Mune T, et al: Decreased glucagon-like peptide 1 receptor expression in endothelial and smooth muscle cells in diabetic db/db mice: TCF7L2 is a possible regulator of the vascular glucagon-like peptide 1 receptor. Diab Vasc Dis Res. 14:540–548. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Frescas D, Valenti L and Accili D: Nuclear trapping of the fork-head transcription factor FoxO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem. 280:20589–20595. 2005. View Article : Google Scholar : PubMed/NCBI

50 

Bordone L, Motta MC, Picard F, Robinson A, Jhala US, Apfeld J, McDonagh T, Lemieux M, McBurney M, Szilvasi A, et al: Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 4:e312006. View Article : Google Scholar

51 

Lee JH, Song MY, Song EK, Kim EK, Moon WS, Han MK, Park JW, Kwon KB and Park BH: Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappaB signaling pathway. Diabetes. 58:344–351. 2009. View Article : Google Scholar :

52 

Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X and Zhai Q: SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab. 6:307–319. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Schenk S, McCurdy CE, Philp A, Chen MZ, Holliday MJ, Bandyopadhyay GK, Osborn O, Baar K and Olefsky JM: Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J Clin Invest. 121:4281–4288. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 44 Issue 3

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Jeon, J.Y., Choi, S., Ha, E.S., Lee, H.B., Kim, T.H., Han, S.J. ... Lee, K. (2019). GLP‑1 improves palmitate‑induced insulin resistance in human skeletal muscle via SIRT1 activity. International Journal of Molecular Medicine, 44, 1161-1171. https://doi.org/10.3892/ijmm.2019.4272
MLA
Jeon, J. Y., Choi, S., Ha, E. S., Lee, H. B., Kim, T. H., Han, S. J., Kim, H. J., Kim, D. J., Kang, Y., Lee, K."GLP‑1 improves palmitate‑induced insulin resistance in human skeletal muscle via SIRT1 activity". International Journal of Molecular Medicine 44.3 (2019): 1161-1171.
Chicago
Jeon, J. Y., Choi, S., Ha, E. S., Lee, H. B., Kim, T. H., Han, S. J., Kim, H. J., Kim, D. J., Kang, Y., Lee, K."GLP‑1 improves palmitate‑induced insulin resistance in human skeletal muscle via SIRT1 activity". International Journal of Molecular Medicine 44, no. 3 (2019): 1161-1171. https://doi.org/10.3892/ijmm.2019.4272